Quantum metrology

被引:28
|
作者
Xiang Guo-Yong [1 ]
Guo Guang-Can [1 ]
机构
[1] Univ Sci & Technol China, Key Lab Quantum Informat, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
quantum entangled state; phase estimation; quantum imaging; quantum tomography; OPTICAL LITHOGRAPHY; ENTANGLEMENT; TOMOGRAPHY; LIMIT;
D O I
10.1088/1674-1056/22/11/110601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The statistical error is ineluctable in any measurement. Quantum techniques, especially with the development of quantum information, can help us squeeze the statistical error and enhance the precision of measurement. In a quantum system, there are some quantum parameters, such as the quantum state, quantum operator, and quantum dimension, which have no classical counterparts. So quantum metrology deals with not only the traditional parameters, but also the quantum parameters. Quantum metrology includes two important parts: measuring the physical parameters with a precision beating the classical physics limit and measuring the quantum parameters precisely. In this review, we will introduce how quantum characters ( e. g., squeezed state and quantum entanglement) yield a higher precision, what the research areas are scientists most interesting in, and what the development status of quantum metrology and its perspectives are.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Quantum Metrology Assisted by Machine Learning
    Huang, Jiahao
    Zhuang, Min
    Zhou, Jungeng
    Shen, Yi
    Lee, Chaohong
    ADVANCED QUANTUM TECHNOLOGIES, 2024,
  • [12] Experimental demonstration of nonlinear quantum metrology with optimal quantum state
    Nie, Xinfang
    Huang, Jiahao
    Li, Zhaokai
    Zheng, Wenqiang
    Lee, Chaohong
    Peng, Xinhua
    Du, Jiangfeng
    SCIENCE BULLETIN, 2018, 63 (08) : 469 - 476
  • [13] Cryptographic quantum metrology
    Huang, Zixin
    Macchiavello, Chiara
    Maccone, Lorenzo
    PHYSICAL REVIEW A, 2019, 99 (02)
  • [14] Quantum Critical Metrology
    Frerot, Irenee
    Roscilde, Tommaso
    PHYSICAL REVIEW LETTERS, 2018, 121 (02)
  • [15] Advances in quantum metrology
    Giovannetti, Vittorio
    Lloyd, Seth
    Maccone, Lorenzo
    NATURE PHOTONICS, 2011, 5 (04) : 222 - 229
  • [16] Random Bosonic States for Robust Quantum Metrology
    Oszmaniec, M.
    Augusiak, R.
    Gogolin, C.
    Kolodynski, J.
    Acin, A.
    Lewenstein, M.
    PHYSICAL REVIEW X, 2016, 6 (04):
  • [17] Quantum optical metrology
    Alodjants, A. P.
    Tsarev, D., V
    Kuts, D. A.
    Podoshvedov, S. A.
    Kulik, S. P.
    PHYSICS-USPEKHI, 2024, 67 (07) : 668 - 693
  • [18] Efficient tools for quantum metrology with uncorrelated noise
    Kolodynski, Jan
    Demkowicz-Dobrzanski, Rafal
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [19] Quantum-Enhanced Metrology with Network States
    Yang, Yuxiang
    Yadin, Benjamin
    Xu, Zhen-Peng
    PHYSICAL REVIEW LETTERS, 2024, 132 (21)
  • [20] Contextual quantum metrology
    Jae, Jeongwoo
    Lee, Jiwon
    Kim, M. S.
    Lee, Kwang-Geol
    Lee, Jinhyoung
    NPJ QUANTUM INFORMATION, 2024, 10 (01)