Spherical splines for data interpolation and fitting

被引:33
作者
Baramidze, V [1 ]
Lai, MJ
Shum, CK
机构
[1] Univ Georgia, Dept Math, Athens, GA 30602 USA
[2] Ohio State Univ, Lab Space Geodesy & Remote Sensing, Columbus, OH 43210 USA
关键词
spherical splines; data fitting;
D O I
10.1137/040620722
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study minimal energy interpolation and discrete and penalized least squares approximation problems on the unit sphere using nonhomogeneous spherical splines. Several numerical experiments are conducted to compare approximating properties of homogeneous and nonhomogeneous splines. Our numerical experiments show that nonhomogeneous splines have certain advantages over homogeneous splines.
引用
收藏
页码:241 / 259
页数:19
相关论文
共 15 条
[1]  
Alfeld P, 1996, COMPUT AIDED GEOM D, V13, P333, DOI 10.1016/0167-8396(95)00030-5
[2]   Dimension and local bases of homogeneous spline spaces [J].
Alfeld, P ;
Neamtu, M ;
Schumaker, LL .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (05) :1482-1501
[3]   Fitting scattered data on sphere-like surfaces using spherical splines [J].
Alfeld, P ;
Neamtu, M ;
Schumaker, LL .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 73 (1-2) :5-43
[4]   On convergence rate of the augmented Lagrangian algorithm for nonsymmetric saddle point problems [J].
Awanou, GM ;
Lai, MJ .
APPLIED NUMERICAL MATHEMATICS, 2005, 54 (02) :122-134
[5]  
BARAMIDZE V, 2005, THESIS U GEORGIA ATH
[6]  
BARAMIDZE V, 2005, APPROXIMATION THEORY, V11, P25
[7]  
Fasshauer GE, 1998, INNOV APPL MATH, P117
[8]  
GOMIDE A, 2000, IC0013 U CAMP
[9]  
LEMOINE FG, 1998, EOS T AGU, V79, P117
[10]   On the approximation order of splines on spherical triangulations [J].
Neamtu, M ;
Schumaker, LL .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2004, 21 (1-2) :3-20