Weak limits for quantum random walks

被引:171
作者
Grimmett, G
Janson, S
Scudo, PF
机构
[1] Univ Cambridge, Ctr Math Sci, Stat Lab, Cambridge CB3 0WB, England
[2] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
[3] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel
来源
PHYSICAL REVIEW E | 2004年 / 69卷 / 02期
关键词
D O I
10.1103/PhysRevE.69.026119
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We formulate and prove a general weak limit theorem for quantum random walks in one and more dimensions. With X-n denoting position at time n, we show that X-n/n converges weakly as n-->infinity to a certain distribution which is absolutely continuous and of bounded support. The proof is rigorous and makes use of Fourier transform methods. This approach simplifies and extends certain preceding derivations valid in one dimension that make use of combinatorial and path integral methods.
引用
收藏
页码:026119 / 1
页数:6
相关论文
共 7 条
[1]  
AMBAINIS A, 2001, UNPUB P 33 ANN ACM S, P37
[2]  
Billingsley P., 1986, PROBABILITY MEASURE
[3]  
GOTTLIEB AD, QUANTPH0310026
[4]  
Grimmett G., 2001, Probability and random processes
[5]   Quantum random walks: an introductory overview [J].
Kempe, J .
CONTEMPORARY PHYSICS, 2003, 44 (04) :307-327
[6]  
KONNO N, QUANTPH0206103
[7]   Quantum Random Walks in One Dimension [J].
Konno, Norio .
QUANTUM INFORMATION PROCESSING, 2002, 1 (05) :345-354