Blow-up phenomena for the nonlinear nonlocal porous medium equation under Robin boundary condition

被引:35
作者
Liu, Yan [1 ]
机构
[1] Guangdong Univ Finance, Dept Appl Math, Guangzhou 510521, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Blow-up; Robin boundary condition; Lower bound; Non-local porous medium equation; PARABOLIC PROBLEMS; HEAT-EQUATION; TIME;
D O I
10.1016/j.camwa.2013.08.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we determine a lower bound for the blow-up time of the nonlinear nonlocal porous medium equation under Robin boundary condition if the solution blows up. The conditions which ensure that the blow-up does not occur are also presented. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2092 / 2095
页数:4
相关论文
共 16 条
[1]   Global and blow-up solutions for nonlinear parabolic equations with Robin boundary conditions [J].
Ding, Juntang .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 65 (11) :1808-1822
[2]   Blow-up phenomena for a class of quasilinear parabolic problems under Robin boundary condition [J].
Enache, Cristian .
APPLIED MATHEMATICS LETTERS, 2011, 24 (03) :288-292
[3]   Global existence and blow-up for a nonlinear porous medium equation [J].
Li, FC ;
Xie, CH .
APPLIED MATHEMATICS LETTERS, 2003, 16 (02) :185-192
[4]   Blow-up phenomena for some nonlinear parabolic problems under mixed boundary conditions [J].
Li, Yuanfei ;
Liu, Yan ;
Lin, Changhao .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) :3815-3823
[5]  
Liu DM, 2012, ACTA MATH SCI, V32, P1206
[6]   Blow-up phenomena for some nonlinear parabolic problems [J].
Payne, L. E. ;
Philippin, G. A. ;
Schaefer, P. W. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (10) :3495-3502
[7]   Bounds for blow-up time in nonlinear parabolic problems [J].
Payne, L. E. ;
Philippin, G. A. ;
Schaefer, P. W. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (01) :438-447
[8]   Lower bounds for the blow-up time in a temperature dependent Navier-Stokes flow [J].
Payne, L. E. ;
Song, J. C. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (01) :371-376
[9]   Lower bounds for blow-up time in parabolic problems under Dirichlet conditions [J].
Payne, L. E. ;
Schaefer, P. W. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (02) :1196-1205
[10]   Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition, I [J].
Payne, L. E. ;
Philippin, G. A. ;
Piro, S. Vernier .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2010, 61 (06) :999-1007