Numerical verification of Beilinson's conjecture for K2 of hyperelliptic curves

被引:17
作者
Dokchitser, T [1 ]
de Jeu, R
Zagier, D
机构
[1] Univ Cambridge Robinson Coll, Cambridge CB3 9AN, England
[2] Univ Durham, Dept Math Sci, Sci Labs, Durham DH1 3LE, England
[3] Max Planck Inst Math, D-53111 Bonn, Germany
[4] Coll France, F-75005 Paris, France
关键词
K-theory; regulator; L-function; curve; torsion points;
D O I
10.1112/S0010437X05001892
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct families of hyperelliptic curves over Q of arbitrary genus g with (at least) g integral elements in K-2. We also verify the Beilinson conjectures about K-2 numerically for several curves with g = 2, 3, 4 and 5. The first few sections of the paper also provide an elementary introduction to the Beilinson conjectures for K-2 of curves.
引用
收藏
页码:339 / 373
页数:35
相关论文
共 19 条
[1]  
BASS H, 1968, ALGEBRAIC K THEORY
[2]  
Bloch S., 1986, CONT MATH, V55, P79, DOI DOI 10.1090/CONM/055.1/862631
[3]  
Bloch S.J., 2000, CRM MONOGRAPH SERIES, V11
[4]  
Borel A., 1975, Ann. Sci. Ecole Norm. Sup., V4, P235
[5]  
Borel A., 1980, ANN SCUOLA NORM SUP, V7, P373
[6]  
Borel A., 1977, Ann. Sc. Norm. Super. Pisa, Cl. Sci., V4, P613
[7]  
Borwein P., 1994, Enseign. Math., V40, P3
[8]  
Cassels J. W. S., 1996, LONDON MATH SOC LECT, V230
[9]  
DEJEU R, 2005, RESULT K2 CERTAIN HY
[10]   Computing special values of motivic L-functions [J].
Dokchitser, T .
EXPERIMENTAL MATHEMATICS, 2004, 13 (02) :137-149