On multiplicity and stability of positive solutions of a diffusive prey-predator model

被引:26
作者
Peng, R [1 ]
Wang, MX
机构
[1] SE Univ, Dept Math, Nanjing 210018, Peoples R China
[2] Xuzhou Normal Univ, Dept Math, Xuzhou 221116, Peoples R China
基金
中国国家自然科学基金;
关键词
diffusive prey-predator model; positive solutions; multiplicity; stability;
D O I
10.1016/j.jmaa.2005.04.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, we consider the following diffusive prey-predator model: Delta u=u(a-u-v/(1+mu)) in Omega, u=0 on a Omega, -Delta v=v(b-mv/(m+u)) in Omega, v=0 on a Omega. We are mainly concerned with the positive solutions of the system in the case that the parameter m is large, and obtain a complete understanding for the existence, multiplicity and stability of positive solutions. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:256 / 268
页数:13
相关论文
共 50 条
  • [21] Existence, uniqueness and stability of positive steady states to a prey-predator diffusion system
    MingXin Wang
    XuBo Wang
    Science in China Series A: Mathematics, 2009, 52 : 1031 - 1041
  • [22] Existence, uniqueness and stability of positive steady states to a prey-predator diffusion system
    Wang MingXin
    Wang XuBo
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (05): : 1031 - 1041
  • [23] A Prey-predator Model with Infection in Both Prey and Predator
    Bera, S. P.
    Maiti, A.
    Samanta, G. P.
    FILOMAT, 2015, 29 (08) : 1753 - 1767
  • [24] Stability and Hopf Bifurcation of a Delayed Prey-Predator Model with Disease in the Predator
    Huang, Chuangxia
    Zhang, Hua
    Cao, Jinde
    Hu, Haijun
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (07):
  • [25] A ROBUST MULTIPLICITY RESULT IN A GENERALIZED DIFFUSIVE PREDATOR-PREY MODEL
    Lopez-gomez, Julian
    Munoz-hernandez, Eduardo
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2024, 29 (5-6) : 437 - 476
  • [26] POSITIVE SOLUTIONS OF A DIFFUSIVE PREDATOR-PREY MUTUALIST MODEL WITH CROSS-DIFFUSION
    Zhou, Jun
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2016, 47 (01) : 125 - 145
  • [27] Multiplicity and Uniqueness of Positive Solutions for a Predator-Prey Model with C-M Functional Response
    Dong, Yaying
    Li, Shanbing
    Li, Yanling
    ACTA APPLICANDAE MATHEMATICAE, 2015, 139 (01) : 187 - 206
  • [28] Positive solutions of a diffusive Leslie-Gower predator-prey model with Bazykin functional response
    Zhou, Jun
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (01): : 1 - 18
  • [29] Mathematical investigations of diffusive prey-predator dynamical system
    Yasin, Muhammad Waqas
    Shahzad, Tahir
    Shoukat, Saba
    Iqbal, Muhammad Sajid
    Ahmed, Nauman
    Baber, Muhammad Zafarullah
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2025,
  • [30] GLOBAL SOLUTIONS AND PATTERN FORMATIONS FOR A DIFFUSIVE PREY-PREDATOR SYSTEM WITH HUNTING COOPERATION AND PREY-TAXIS
    Zhang, Huisen
    Fu, Shengmao
    Huang, Canyun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (09): : 3621 - 3644