Zero-Shot Cross-Media Embedding Learning With Dual Adversarial Distribution Network

被引:36
|
作者
Chi, Jingze [1 ]
Peng, Yuxin [1 ]
机构
[1] Peking Univ, Inst Comp Sci & Technol, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Gallium nitride; Semantics; Media; Correlation; Training; Dogs; Measurement; Cross-media retrieval; zero-shot learning; generative adversarial networks; maximum mean discrepancy; REPRESENTATION; RETRIEVAL;
D O I
10.1109/TCSVT.2019.2900171
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Existing cross-media retrieval methods are mainly based on the condition where the training set covers all the categories in the testing set, which lack extensibility to retrieve data of new categories. Thus, zero-shot cross-media retrieval has been a promising direction in practical application, aiming to retrieve data of new categories (unseen categories), only with data of limited known categories (seen categories) for training. It is challenging for not only the heterogeneous distributions across different media types, but also the inconsistent semantics across seen and unseen categories need to be handled. To address the above issues, we propose dual adversarial distribution network (DADN), to learn common embeddings and explore the knowledge from word-embeddings of different categories. The main contributions are as follows. First, zero-shot cross-media dual generative adversarial networks architecture is proposed, in which two kinds of generative adversarial networks (GANs) for common embedding generation and representation reconstruction form dual processes. The dual GANs mutually promote to model semantic and underlying structure information, which generalizes across different categories on heterogeneous distributions and boosts correlation learning. Second, distribution matching with maximum mean discrepancy criterion is proposed to combine with dual GANs, which enhances distribution matching between common embeddings and category word-embeddings. Finally, adversarial inter-media metric constraint is proposed with an inter-media loss and a quadruplet loss, which further model the inter-media correlation information and improve semantic ranking ability. The experiments on four widely used cross-media datasets demonstrate the effectiveness of our DADN approach.
引用
收藏
页码:1173 / 1187
页数:15
相关论文
共 50 条
  • [1] Dual Adversarial Networks for Zero-shot Cross-media Retrieval
    Chi, Jingze
    Peng, Yuxin
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 663 - 669
  • [2] Dual Prototype Contrastive Network for Generalized Zero-Shot Learning
    Jiang, Huajie
    Li, Zhengxian
    Hu, Yongli
    Yin, Baocai
    Yang, Jian
    van den Hengel, Anton
    Yang, Ming-Hsuan
    Qi, Yuankai
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (02) : 1111 - 1122
  • [3] EGANS: Evolutionary Generative Adversarial Network Search for Zero-Shot Learning
    Chen, Shiming
    Chen, Shuhuang
    Hou, Wenjin
    Ding, Weiping
    You, Xinge
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024, 28 (03) : 582 - 596
  • [4] Domain-Oriented Semantic Embedding for Zero-Shot Learning
    Min, Shaobo
    Yao, Hantao
    Xie, Hongtao
    Zha, Zheng-Jun
    Zhang, Yongdong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 3919 - 3930
  • [5] Discrete Bidirectional Matrix Factorization Hashing for Zero-Shot Cross-Media Retrieval
    Zhang, Donglin
    Wu, Xiao-Jun
    Yu, Jun
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2021, PT II, 2021, 13020 : 524 - 536
  • [6] Zero-Shot Learning via Structure-Aligned Generative Adversarial Network
    Tang, Chenwei
    He, Zhenan
    Li, Yunxia
    Lv, Jiancheng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (11) : 6749 - 6762
  • [7] Deep Unbiased Embedding Transfer for Zero-Shot Learning
    Jia, Zhen
    Zhang, Zhang
    Wang, Liang
    Shan, Caifeng
    Tan, Tieniu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 1958 - 1971
  • [8] Towards Effective Deep Embedding for Zero-Shot Learning
    Zhang, Lei
    Wang, Peng
    Liu, Lingqiao
    Shen, Chunhua
    Wei, Wei
    Zhang, Yanning
    van den Hengel, Anton
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (09) : 2843 - 2852
  • [9] Multi-Label Zero-Shot Learning With Adversarial and Variational Techniques
    Gull, Muqaddas
    Arif, Omar
    IEEE ACCESS, 2024, 12 : 94990 - 95006
  • [10] Spherical Zero-Shot Learning
    Shen, Jiayi
    Xiao, Zehao
    Zhen, Xiantong
    Zhang, Lei
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (02) : 634 - 645