Mosaic-like Silver Nanobowl Plasmonic Crystals as Highly Active Surface-Enhanced Raman Scattering Substrates

被引:6
作者
Baca, Alfred J. [1 ]
Baca, Joshua [1 ]
Montgomery, Jason M. [2 ]
Cambrea, Lee R. [1 ]
Funcheon, Peter [2 ]
Johnson, Linda [1 ]
Moran, Mark [1 ]
Connor, Dan [1 ]
机构
[1] US Navy NAVAIR NAWCWD, Dept Chem, China Lake, CA 93555 USA
[2] Florida Southern Coll, Dept Chem & Phys, Lakeland, FL 33801 USA
关键词
SERS SUBSTRATE; ARRAYS; NANOPARTICLES; OPTIMIZATION; PYRIDINE; SPECTRA;
D O I
10.1021/acs.jpcc.5b03824
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a simple approach to creating a type of surface-enhanced Raman scattering (SERS) substrate composed of a mosaic-like structured Ag metal surface on nanobowl plasmonic crystals (NBPCs) formed by combining soft nanoimprinting and substrate (in situ) heating during metal deposition. This new type of sensor exploits the electromagnetic enhancement of localized surface plasmon resonances (LSPR) produced by a template nanostructured metal surface and surface plasmons (SP) in-between the gaps of the mosaic surface to create a highly SERS-active substrate. Our approach is simple, in that it implements low processing temperatures (200 degrees C) and does not require any postdeposition annealing or exposure to high temperature environments, enabling the use of mechanically flexible substrates. These SERS substrates exhibit higher SERS intensities in comparison to those obtained with the corresponding square array of smooth (room temperature metal deposition) nanobowl structures with similar spatial layouts. As an example toward an application, we demonstrate polychlorinated biphenyl (PCB-77) SERS detection using Ag mosaic NBPC substrates. Three-dimensional finite-difference time-domain (3D FDTD) simulations qualitatively capture the key features of these systems and suggest a route to the fabrication of optimized, highly efficient SERS substrates in silico.
引用
收藏
页码:17790 / 17799
页数:10
相关论文
共 33 条
[1]   ANOMALOUSLY INTENSE RAMAN-SPECTRA OF PYRIDINE AT A SILVER ELECTRODE [J].
ALBRECHT, MG ;
CREIGHTON, JA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1977, 99 (15) :5215-5217
[2]   Multidimensional Architectures for Functional Optical Devices [J].
Arpin, Kevin A. ;
Mihi, Agustin ;
Johnson, Harley T. ;
Baca, Alfred J. ;
Rogers, John A. ;
Lewis, Jennifer A. ;
Braun, Paul V. .
ADVANCED MATERIALS, 2010, 22 (10) :1084-1101
[3]   Optimization of Nanopost Plasmonic Crystals for Surface Enhanced Raman Scattering [J].
Baca, Alfred J. ;
Montgomery, Jason M. ;
Cambrea, Lee R. ;
Moran, Mark ;
Johnson, Linda ;
Yacoub, Jeanine ;
Truong, Tu T. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (15) :7171-7178
[4]   Molded plasmonic crystals for detecting and spatially imaging surface bound species by surface-enhanced Raman scattering [J].
Baca, Alfred J. ;
Truong, Tu T. ;
Cambrea, Lee R. ;
Montgomery, Jason M. ;
Gray, Stephen K. ;
Abdula, Daner ;
Banks, Tony R. ;
Yao, Jimin ;
Nuzzo, Ralph G. ;
Rogers, John A. .
APPLIED PHYSICS LETTERS, 2009, 94 (24)
[5]   Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals [J].
Chanda, Debashis ;
Shigeta, Kazuki ;
Tu Truong ;
Lui, Eric ;
Mihi, Agustin ;
Schulmerich, Matthew ;
Braun, Paul V. ;
Bhargava, Rohit ;
Rogers, John A. .
NATURE COMMUNICATIONS, 2011, 2
[6]  
Chanda D, 2011, NAT NANOTECHNOL, V6, P402, DOI [10.1038/nnano.2011.82, 10.1038/NNANO.2011.82]
[7]   Ordered arrays of Au-nanobowls loaded with Ag-nanoparticles as effective SERS substrates for rapid detection of PCBs [J].
Chen, Bensong ;
Meng, Guowen ;
Zhou, Fei ;
Huang, Qing ;
Zhu, Chuhong ;
Hu, Xiaoye ;
Kong, Mingguang .
NANOTECHNOLOGY, 2014, 25 (14)
[8]   Double-Resonance Plasmon Substrates for Surface-Enhanced Raman Scattering with Enhancement at Excitation and Stokes Frequencies [J].
Chu, Yizhuo ;
Banaee, Mohamad G. ;
Crozier, Kenneth B. .
ACS NANO, 2010, 4 (05) :2804-2810
[9]   RAMAN-SPECTRA OF PYRIDINE ADSORBED AT A SILVER ELECTRODE [J].
FLEISCHMANN, M ;
HENDRA, PJ ;
MCQUILLAN, AJ .
CHEMICAL PHYSICS LETTERS, 1974, 26 (02) :163-166
[10]  
Hagness, 2005, COMPUTATIONAL ELECTR