Strict Majority Bootstrap Percolation on Augmented Tori and Random Regular Graphs: Experimental Results

被引:0
作者
Moisset de Espanes, P. [1 ,3 ]
Rapaport, I. [1 ,2 ]
机构
[1] Univ Chile, Ctr Modelamiento Matemat, UMI 2807, CNRS, Santiago, Chile
[2] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[3] Univ Chile, Ctr Biotecnol & Bioingn, Santiago, Chile
来源
CELLULAR AUTOMATA AND DISCRETE COMPLEX SYSTEMS (AUTOMATA 2014) | 2015年 / 8996卷
关键词
DYNAMIC MONOPOLIES; CRITICAL-VALUES; N-CUBE; THRESHOLD; TREES; N(-1);
D O I
10.1007/978-3-319-18812-6_8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the strict majority bootstrap percolation process on graphs. Vertices may be active or passive. Initially, active vertices are chosen independently with probability p. Each passive vertex v becomes active if at least inverted right perpendiculardeg(v)+1/2inverted left perpendicular of its neighbors are active (and thereafter never changes its state). If at the end of the process all vertices become active then we say that the initial set of active vertices percolates on the graph. We address the problem of finding graphs for which percolation is likely to occur for small values of p. For that purpose we study percolation on two topologies. The first is an n x n toroidal grid augmented with a universal vertex. Also, each vertex v in the torus is connected to all nodes whose distance to v is less than or equal to a parameter r. The second family contains all random regular graphs of even degree, also augmented with a universal node. We compare our computational results to those obtained in previous publications for r-rings and random regular graphs.
引用
收藏
页码:97 / 105
页数:9
相关论文
共 30 条
[1]   Modeling the spread of fault in majority-based network systems: Dynamic monopolies in triangular grids [J].
Adams, Sarah Spence ;
Booth, Paul ;
Troxell, Denise Sakai ;
Zinnen, S. Luke .
DISCRETE APPLIED MATHEMATICS, 2012, 160 (10-11) :1624-1633
[2]   Dynamic monopolies and feedback vertex sets in hexagonal grids [J].
Adams, Sarah Spence ;
Troxell, Denise Sakai ;
Zinnen, S. Luke .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (11) :4049-4057
[3]   METASTABILITY EFFECTS IN BOOTSTRAP PERCOLATION [J].
AIZENMAN, M ;
LEBOWITZ, JL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (19) :3801-3813
[4]   Bootstrap percolation on the hypercube [J].
Balogh, J ;
Bollobás, B .
PROBABILITY THEORY AND RELATED FIELDS, 2006, 134 (04) :624-648
[5]   Bootstrap percolation on the random regular graph [J].
Balogh, Jozsef ;
Pittel, Boris G. .
RANDOM STRUCTURES & ALGORITHMS, 2007, 30 (1-2) :257-286
[6]   Bootstrap percolation on infinite trees and non-amenable groups [J].
Balogh, Jozsef ;
Peres, Yuval ;
Pete, Gabor .
COMBINATORICS PROBABILITY & COMPUTING, 2006, 15 (05) :715-730
[7]   THE SHARP THRESHOLD FOR BOOTSTRAP PERCOLATION IN ALL DIMENSIONS [J].
Balogh, Jozsef ;
Bollobas, Bela ;
Duminil-Copin, Hugo ;
Morris, Robert .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (05) :2667-2701
[8]   Bootstrap Percolation in High Dimensions [J].
Balogh, Jozsef ;
Bollobas, Bela ;
Morris, Robert .
COMBINATORICS PROBABILITY & COMPUTING, 2010, 19 (5-6) :643-692
[9]   BOOTSTRAP PERCOLATION IN THREE DIMENSIONS [J].
Balogh, Jozsef ;
Bollobas, Bela ;
Morris, Robert .
ANNALS OF PROBABILITY, 2009, 37 (04) :1329-1380
[10]   Majority Bootstrap Percolation on the Hypercube [J].
Balogh, Jozsef ;
Bollobas, Bela ;
Morris, Robert .
COMBINATORICS PROBABILITY & COMPUTING, 2009, 18 (1-2) :17-51