Non-abelian tensor product and homology of Lie superalgebras

被引:18
作者
Garcia-Martinez, Xabier [1 ]
Khraaladze, Emzar [2 ]
Ladra, Manuel [1 ]
机构
[1] Univ Santiago de Compostela, IMAT, Dept Algebra, Santiago De Compostela 15782, Spain
[2] Tbilisi State Univ, A Razmadze Math Inst, GE-0177 Tbilisi, Georgia
基金
美国国家科学基金会;
关键词
Lie superalgebras; Associative superalgebras; Non-abelian tensor and exterior products; Non-abelian homology; Cyclic homology; Hopf formula; Crossed module; CENTRAL EXTENSIONS; COHOMOLOGY; ALGEBRAS;
D O I
10.1016/j.jalgebra.2015.05.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the non-abelian tensor product of Lie superalgebras and study some of its properties. We use it to describe the universal central extensions of Lie superalgebras. We present the low-dimensional non-abelian homology of Lie superalgebras and establish its relationship with the cyclic homology of associative superalgebras. We also define the non-abelian exterior product and give an analogue of Miller's theorem, Hopf formula and a six-term exact sequence for the homology of Lie superalgebras. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:464 / 488
页数:25
相关论文
共 23 条
[1]   VANKAMPEN THEOREMS FOR DIAGRAMS OF SPACES [J].
BROWN, R ;
LODAY, JL .
TOPOLOGY, 1987, 26 (03) :311-335
[2]  
Carmeli C, 2011, EMS SER LECT MATH, P1, DOI 10.4171/097
[3]   PERFECT CROSSED-MODULES IN LIE-ALGEBRAS [J].
CASAS, JM ;
LADRA, M .
COMMUNICATIONS IN ALGEBRA, 1995, 23 (05) :1625-1644
[4]  
Castiglioni J.L., 2014, ARXIV14037159
[5]   Universal central extensions of 5lm|n simin over Z/2Z-graded algebras [J].
Chen, Hongjia ;
Sun, Jie .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (09) :4278-4294
[6]   K2 OF DISCRETE VALUATION RINGS [J].
DENNIS, RK ;
STEIN, MR .
ADVANCES IN MATHEMATICS, 1975, 18 (02) :182-238
[7]   A NON-ABELIAN TENSOR PRODUCT OF LIE-ALGEBRAS [J].
ELLIS, GJ .
GLASGOW MATHEMATICAL JOURNAL, 1991, 33 :101-120
[8]   NON-ABELIAN EXTERIOR PRODUCTS OF LIE-ALGEBRAS AND AN EXACT SEQUENCE IN THE HOMOLOGY OF LIE-ALGEBRAS [J].
ELLIS, GJ .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1987, 46 (2-3) :111-115
[9]  
Garcia-Martinez X., 2014, ARXIV14054035
[10]   COHOMOLOGY OF CROSSED LIE-ALGEBRAS AND ADDITIVE MILNORS K-THEORY [J].
GUIN, D .
ANNALES DE L INSTITUT FOURIER, 1995, 45 (01) :93-118