High-performance CRISPR-Cas12a genome editing for combinatorial genetic screening

被引:71
|
作者
Gier, Rodrigo A. [1 ,2 ,3 ,6 ]
Budinich, Krista A. [1 ,2 ,3 ]
Evitt, Niklaus H. [1 ,2 ,3 ,4 ]
Cao, Zhendong [1 ,2 ,3 ]
Freilich, Elizabeth S. [1 ,2 ,3 ]
Chen, Qingzhou [1 ,2 ,3 ]
Qi, Jun [5 ]
Lan, Yemin [2 ]
Kohli, Rahul M. [2 ,4 ]
Shi, Junwei [1 ,2 ,3 ]
机构
[1] Univ Penn, Perelman Sch Med, Dept Canc Biol, Philadelphia, PA 19104 USA
[2] Univ Penn, Epigenet Inst, Perelman Sch Med, Dept Cell & Dev Biol, Philadelphia, PA 19104 USA
[3] Univ Penn, Abramson Family Canc Res Inst, Perelman Sch Med, Philadelphia, PA 19104 USA
[4] Univ Penn, Perelman Sch Med, Dept Med, Philadelphia, PA 19104 USA
[5] Harvard Med Sch, Dana Farber Canc Inst, Dept Med, Dept Canc Biol, Boston, MA 02215 USA
[6] Univ Penn, Dept Bioengn, Philadelphia, PA 19104 USA
关键词
LEUKEMIA; MAINTENANCE; CELLS; BRD9;
D O I
10.1038/s41467-020-17209-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
CRISPR-based genetic screening has revolutionized cancer drug target discovery, yet reliable, multiplex gene editing to reveal synergies between gene targets remains a major challenge. Here, we present a simple and robust CRISPR-Cas12a-based approach for combinatorial genetic screening in cancer cells. By engineering the CRISPR-AsCas12a system with key modifications to the Cas protein and its CRISPR RNA (crRNA), we can achieve high efficiency combinatorial genetic screening. We demonstrate the performance of our optimized AsCas12a (opAsCas12a) through double knockout screening against epigenetic regulators. This screen reveals synthetic sick interactions between Brd9&Jmjd6, Kat6a&Jmjd6, and Brpf1&Jmjd6 in leukemia cells.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Delivery Aspects of CRISPR/Cas for in Vivo Genome Editing
    Wilbie, Danny
    Walther, Johanna
    Mastrobattista, Enrico
    ACCOUNTS OF CHEMICAL RESEARCH, 2019, 52 (06) : 1555 - 1564
  • [2] Advances in therapeutic CRISPR/Cas9 genome editing
    Savic, Natasa
    Schwank, Gerald
    TRANSLATIONAL RESEARCH, 2016, 168 : 15 - 21
  • [3] Efficient Mitochondrial Genome Editing by CRISPR/Cas9
    Jo, Areum
    Ham, Sangwoo
    Lee, Gum Hwa
    Lee, Yun-Il
    Kim, SangSeong
    Lee, Yun-Song
    Shin, Joo-Ho
    Lee, Yunjong
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [4] Inducible in vivo genome editing with CRISPR-Cas9
    Dow, Lukas E.
    Fisher, Jonathan
    O'Rourke, Kevin P.
    Muley, Ashlesha
    Kastenhuber, Edward R.
    Livshits, Geulah
    Tschaharganeh, Darjus F.
    Socci, Nicholas D.
    Lowe, Scott W.
    NATURE BIOTECHNOLOGY, 2015, 33 (04) : 390 - U98
  • [5] CRISPR/Cas12a Multiplex Genome Editing of Saccharomyces cerevisiae and the Creation of Yeast Pixel Art
    Ciurkot, Klaudia
    Vonk, Brenda
    Gorochowski, Thomas E.
    Roubos, Johannes A.
    Verwaal, Rene
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2019, (147):
  • [6] Diversification of the CRISPR Toolbox: Applications of CRISPR-Cas Systems Beyond Genome Editing
    Balderston, Sarah
    Clouse, Gabrielle
    Ripoll, Juan-Jose
    Pratt, Grace K.
    Gasiunas, Giedrius
    Bock, Jens-Ole
    Bennett, Eric Paul
    Aran, Kiana
    CRISPR JOURNAL, 2021, 4 (03): : 400 - 415
  • [7] Efficient Editing of an Adenoviral Vector Genome with CRISPR/Cas9
    Li, Qiang
    Wang, Hui
    Gong, Chen-yu
    Chen, Zhao
    Yang, Jia-xing
    Shao, Hong-wei
    Zhang, Wen-feng
    INDIAN JOURNAL OF MICROBIOLOGY, 2021, 61 (01) : 91 - 95
  • [8] CRISPR/Cas9 genome editing approaches for psychiatric research
    Gutierrez-Rodriguez, Araceli
    Cruz-Fuentes, Carlos S.
    Genis-Mendoza, Alma D.
    Nicolini, Humberto
    BRAZILIAN JOURNAL OF PSYCHIATRY, 2023, 45 (02) : 137 - 145
  • [9] Genome editing in the mammalian brain using the CRISPR-Cas system
    Nishiyama, Jun
    NEUROSCIENCE RESEARCH, 2019, 141 : 4 - 12
  • [10] Nanovesicle-Mediated Delivery Systems for CRISPR/Cas Genome Editing
    Kim, Dongyoon
    Quoc-Viet Le
    Wu, Yina
    Park, Jinwon
    Oh, Yu-Kyoung
    PHARMACEUTICS, 2020, 12 (12) : 1 - 42