On design of multi-functional microstructural materials

被引:172
作者
Cadman, Joseph E. [1 ]
Zhou, Shiwei [2 ]
Chen, Yuhang [3 ]
Li, Qing [1 ]
机构
[1] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia
[2] RMIT Univ, Sch Civil Environm & Chem Engn, Innovat Struct Grp, Melbourne, Vic 3001, Australia
[3] Heriot Watt Univ, Sch Engn & Phys Sci, IMPEE, Edinburgh, Midlothian, Scotland
基金
澳大利亚研究理事会;
关键词
LEVEL SET METHOD; FUNCTIONALLY GRADED MATERIAL; TOPOLOGY OPTIMIZATION METHOD; OPTIMALITY CRITERIA METHOD; NEGATIVE POISSON RATIO; MINIMUM LENGTH SCALE; MAXIMIZING BAND-GAPS; COMPUTATIONAL DESIGN; STRUCTURAL OPTIMIZATION; EVOLUTIONARY TOPOLOGY;
D O I
10.1007/s10853-012-6643-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The design of periodic microstructural composite materials to achieve specific properties has been a major area of interest in material research. Tailoring different physical properties by modifying the microstructural architecture in unit cells is one of the main concerns in exploring and developing novel multi-functional cellular composites and has led to the development of a large variety of mathematical models, theories and methodologies for improving the performance of such materials. This paper provides a critical review on the state-of-the-art advances in the design of periodic microstructures of multi-functional materials for a range of physical properties, such as elastic stiffness, Poisson's ratio, thermal expansion coefficient, conductivity, fluidic permeability, particle diffusivity, electrical permittivity and magnetic permeability, etc.
引用
收藏
页码:51 / 66
页数:16
相关论文
共 204 条
[1]   Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration [J].
Adachi, T ;
Osako, Y ;
Tanaka, M ;
Hojo, M ;
Hollister, SJ .
BIOMATERIALS, 2006, 27 (21) :3964-3972
[2]   Auxetic materials [J].
Alderson, A. ;
Alderson, K. L. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2007, 221 (G4) :565-575
[3]   The low velocity impact response of auxetic carbon fibre laminates [J].
Alderson, K. L. ;
Coenen, V. L. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2008, 245 (03) :489-496
[4]   Auxetic polypropylene fibres Part 1 - Manufacture and characterisation [J].
Alderson, KL ;
Alderson, A ;
Smart, G ;
Simkins, VR ;
Davies, PJ .
PLASTICS RUBBER AND COMPOSITES, 2002, 31 (08) :344-349
[5]   Structural optimization using sensitivity analysis and a level-set method [J].
Allaire, G ;
Jouve, F ;
Toader, AM .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 194 (01) :363-393
[6]   Layout and material gradation in topology optimization of functionally graded structures: a global-local approach [J].
Almeida, Sylvia R. M. ;
Paulino, Glaucio H. ;
Silva, Emilio C. N. .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2010, 42 (06) :855-868
[7]  
Amada S., 2001, COMPOS PART B-ENG, V32, P451, DOI [10.1016/S1359-8368(01)00022-1, DOI 10.1016/S1359-8368(01)00022-1]
[8]   Topology optimization of grating couplers for the efficient excitation of surface plasmons [J].
Andkjaer, Jacob ;
Nishiwaki, Shinji ;
Nomura, Tsuyoshi ;
Sigmund, Ole .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2010, 27 (09) :1828-1832
[9]   Efficient topology optimization in MATLAB using 88 lines of code [J].
Andreassen, Erik ;
Clausen, Anders ;
Schevenels, Mattias ;
Lazarov, Boyan S. ;
Sigmund, Ole .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2011, 43 (01) :1-16
[10]  
[Anonymous], 2013, Topology optimization: theory, methods, and applications