Acceptable optimality in linear fractional programming with fuzzy coefficients

被引:44
作者
Mehra, A. [1 ]
Chandra, S. [1 ]
Bector, C. R. [2 ]
机构
[1] Indian Inst Technol, Dept Math, New Delhi 110016, India
[2] Univ Manitoba, Dept Business Adm, Winnipeg, MB R3T 5V4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
fuzzy linear fractional programming; ranking relation; alpha-cut set; (alpha; beta)-acceptable optimal solution; beta)-acceptable optimal value;
D O I
10.1007/s10700-006-0021-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Based on the specified grades of satisfaction, we propose two new concepts of (alpha, beta)-acceptable optimal solution and (alpha, beta)-acceptable optimal value of a fuzzy linear fractional programming problem with fuzzy coefficients, and develop a method to compute them. An example is provided to demonstrate the method.
引用
收藏
页码:5 / 16
页数:12
相关论文
共 17 条
[1]  
[Anonymous], 2002, FUZZY MATH EC ENG
[2]  
[Anonymous], 2005, FUZZY MATH PROGRAMMI
[3]   Fuzzy mathematical programming for multi objective linear fractional programming problem [J].
Chakraborty, M ;
Gupta, S .
FUZZY SETS AND SYSTEMS, 2002, 125 (03) :335-342
[4]  
Charnes A., 1962, Naval Res Logist Quart, V9, P181, DOI [DOI 10.1002/NAV.3800090303, 10.1002/nav.3800090303]
[5]   RANKING FUZZY NUMBERS IN THE SETTING OF POSSIBILITY THEORY [J].
DUBOIS, D ;
PRADE, H .
INFORMATION SCIENCES, 1983, 30 (03) :183-224
[6]   FUZZY APPROACHES FOR MULTIPLE CRITERIA LINEAR FRACTIONAL OPTIMIZATION - A COMMENT [J].
DUTTA, D ;
RAO, JR ;
TIWARI, RN .
FUZZY SETS AND SYSTEMS, 1993, 54 (03) :347-349
[7]  
Kaufmann A, 1988, FUZZY MATH MODELS EN
[8]  
Kaufmann A., 1991, Introduction to fuzzy arithmetic: Theory and applications
[9]   A simple method for obtaining weakly efficient points in multiobjective linear fractional programming problems [J].
Metev, B ;
Gueorguieva, D .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2000, 126 (02) :386-390
[10]  
Ramik J., 2005, FUZZY OPTIM DECIS MA, V4, P25, DOI [10.1007/s10700-004-5568-z, DOI 10.1007/s10700-004-5568-z]