Clustering Gene Expression Data Based on Harmony Search and K-harmonic Means

被引:4
作者
Song, Anping [1 ]
Chen, Jianjiao [2 ]
Tran Thi Anh Tuyet [1 ]
Bai, Xuebin [1 ]
Xie, Jiang [1 ]
Zhang, Wu [1 ]
机构
[1] Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R China
[2] Xinjiang Univ, Sch Informat Sci & Engn, Xinjiang 830046, Peoples R China
来源
2012 11TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS TO BUSINESS, ENGINEERING & SCIENCE (DCABES) | 2012年
关键词
KHM; HS; Clustering; Gene expression data Introduction; CLASSIFICATION; PREDICTION; CANCER;
D O I
10.1109/DCABES.2012.77
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Clustering is one of the most commonly data explorer techniques in Data Mining. K-harmonic means clustering (KHM) is an extension of K-means (KM) and solves the problem of KM initialization using a built-in boosting function. However, it is also suffering from running into local optima. As a stochastic global optimization technique, harmony search (HS) can solve this problem. HS-based KHM, HSKHM not only helps KHM clustering escaping from local optima but also overcomes the shortcoming of slow convergence speed of HS. In this paper, we proposed a hybrid data-clustering algorithm, HSKHM. The experimental results on four real gene expression datasets indicate that HSKHM is superior KHM and HS in most cases. The HSKHM algorithm not only improves the convergence speed of HS but also helps KHM escaping from local optima.
引用
收藏
页码:455 / 460
页数:6
相关论文
共 19 条
  • [1] [Anonymous], 2004, Handbook of Computational Molecular Biology
  • [2] Tissue classification with gene expression profiles
    Ben-Dor, A
    Bruhn, L
    Friedman, N
    Nachman, I
    Schummer, M
    Yakhini, Z
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2000, 7 (3-4) : 559 - 583
  • [3] Gene selection in cancer classification using sparse logistic regression with Bayesian regularization
    Cawley, Gavin C.
    Talbot, Nicola L. C.
    [J]. BIOINFORMATICS, 2006, 22 (19) : 2348 - 2355
  • [4] Chen J., 2011, INT J DIGIT CONTENT, V5, P404
  • [5] Geem ZW, 2009, STUD COMPUT INTELL, V191, P113
  • [6] Geem ZW, 2005, LECT NOTES COMPUT SC, V3612, P741
  • [7] A new heuristic optimization algorithm: Harmony search
    Geem, ZW
    Kim, JH
    Loganathan, GV
    [J]. SIMULATION, 2001, 76 (02) : 60 - 68
  • [8] Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    Golub, TR
    Slonim, DK
    Tamayo, P
    Huard, C
    Gaasenbeek, M
    Mesirov, JP
    Coller, H
    Loh, ML
    Downing, JR
    Caligiuri, MA
    Bloomfield, CD
    Lander, ES
    [J]. SCIENCE, 1999, 286 (5439) : 531 - 537
  • [9] Gordon GJ, 2002, CANCER RES, V62, P4963
  • [10] Hamerly G., 2002, Proceedings of the Eleventh International Conference on Information and Knowledge Management. CIKM 2002, P600, DOI 10.1145/584792.584890