Characterizing the path-independence of the Girsanov transformation for non-Lipschitz SDEs with jumps

被引:8
作者
Qiao, Huijie [1 ]
Wu, Jiang-Lun [2 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 211189, Jiangsu, Peoples R China
[2] Swansea Univ, Dept Math, Singleton Pk, Swansea SA2 8PP, W Glam, Wales
关键词
Non-Lipschitz stochastic differential equations with jumps; The Girsanov transformation; Semi-linear partial integro-differential equation of parabolic type;
D O I
10.1016/j.spl.2016.09.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the paper, by virtue of the Girsanov transformation, we derive a link of a class of (time-inhomogeneous) non-Lipschitz stochastic differential equations (SDEs) with jumps to a class of semi-linear partial integro-differential equations (PIDEs) of parabolic type, in such a manner that these obtained PIDEs characterize the path-independence property of the density process of Girsanov transformation for the non-Lipschitz SDEs with jumps. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:326 / 333
页数:8
相关论文
共 12 条
[1]  
Dellacherie C., 1982, N HOLLAND MATH STUDI, V72
[2]   A forward equation for barrier options under the Brunick & Shreve Markovian projection [J].
Hambly, Ben ;
Mariapragassam, Matthieu ;
Reisinger, Christoph .
QUANTITATIVE FINANCE, 2016, 16 (06) :827-838
[3]  
Ikeda N., 1989, Stochastic differential equations and diffusion processes
[4]  
Jacod J., 2003, Grundlehren der Mathematischen Wissenschaften, Vsecond
[5]   The obstacle problem for semilinear parabolic partial integro-differential equations [J].
Matoussi, Anis ;
Sabbagh, Wissal ;
Zhou, Chao .
STOCHASTICS AND DYNAMICS, 2015, 15 (01)
[6]  
PARTHASARATHY K. R., 2005, PROBABILITY MEASURES
[7]  
Protter P., 2008, MARKOV PROCESS RELAT, V4, P267
[8]   NONLINEAR FILTERING OF STOCHASTIC DYNAMICAL SYSTEMS WITH LEVY NOISES [J].
Qiao, Huijie ;
Duan, Jinqiao .
ADVANCES IN APPLIED PROBABILITY, 2015, 47 (03) :902-918
[9]   Exponential Ergodicity for SDEs with Jumps and Non-Lipschitz Coefficients [J].
Qiao, Huijie .
JOURNAL OF THEORETICAL PROBABILITY, 2014, 27 (01) :137-152
[10]  
Situ R., 2005, THEORY STOCHASTIC DI