Arithmetic properties for (s, t) -regular bipartition functions

被引:7
作者
Xia, Ernest X. W. [1 ]
Yao, Olivia X. M. [1 ]
机构
[1] Jiangsu Univ, Dept Math, Zhenjiang 212013, Jiangsu, Peoples R China
基金
美国国家科学基金会;
关键词
Congruence; Regular partition; Bipartition; Ramanujan's theta function; CONGRUENCES; PARTITIONS;
D O I
10.1016/j.jnt.2016.06.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let B-s,B-t(n) denote the number of (s, t)-regular bipartitions. Recently, Dou discovered an infinite family of congruences modulo 11 for B-3,B-11(n). She also presented several conjectures on B-s,B-t(n). In this paper, utilizing an theta function identity appeared in Berndt's book, we confirm three conjectures on B-3,B-7(n) given by Dou. Moreover, we prove several infinite families of congruences modulo 3 and 5 for B-3,B-s(n) and B-5,B-s(n). In addition, we prove many infinite families of congruences modulo 7 for B-3,B-7(n) by employing an identity of Newman. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 23 条
[1]  
Adiaga C., 2016, INTEGERS UNPUB
[2]   Arithmetic properties of partitions with even parts distinct [J].
Andrews, George E. ;
Hirschhorn, Michael D. ;
Sellers, James A. .
RAMANUJAN JOURNAL, 2010, 23 (1-3) :169-181
[3]  
Berndt B. C., 1991, Ramanujan's Notebooks
[4]   Infinite families of infinite families of congruences for k-regular partitions [J].
Carlson, Rowland ;
Webb, John J. .
RAMANUJAN JOURNAL, 2014, 33 (03) :329-337
[5]   Congruences for 9-regular partitions modulo 3 [J].
Cui, Su-Ping ;
Gu, Nancy S. S. .
RAMANUJAN JOURNAL, 2015, 38 (03) :503-512
[6]   Arithmetic properties of l-regular partitions [J].
Cui, Su-Ping ;
Gu, Nancy S. S. .
ADVANCES IN APPLIED MATHEMATICS, 2013, 51 (04) :507-523
[7]   Congruences for the number of partitions and bipartitions with distinct even parts [J].
Dai, Haobo .
DISCRETE MATHEMATICS, 2015, 338 (03) :133-138
[8]   a""-Divisibility of a""-regular partition functions [J].
Dandurand, Brian ;
Penniston, David .
RAMANUJAN JOURNAL, 2009, 19 (01) :63-70
[9]   Congruences for (3,11)-regular bipartitions modulo 11 [J].
Dou, Donna Q. J. .
RAMANUJAN JOURNAL, 2016, 40 (03) :535-540
[10]   Congruences for l-regular partition functions modulo 3 [J].
Furcy, David ;
Penniston, David .
RAMANUJAN JOURNAL, 2012, 27 (01) :101-108