NuClick: A deep learning framework for interactive segmentation of microscopic images

被引:91
作者
Koohbanani, Navid Alemi [1 ,2 ]
Jahanifar, Mostafa [3 ]
Tajadin, Neda Zamani [4 ]
Rajpoot, Nasir [1 ,2 ]
机构
[1] Univ Warwick, Dept Comp Sci, Warwick, England
[2] Alan Turing Inst, London, England
[3] NRP Co, Dept Res & Dev, Tehran, Iran
[4] Tarbiat Modares Univ, Dept Elect Engn, Tehran, Iran
基金
英国医学研究理事会;
关键词
Annotation; Interactive segmentation; Nuclear segmentation; Cell segmentation; Gland segmentation; Computational pathology; Deep learning; VIDEO SEGMENTATION;
D O I
10.1016/j.media.2020.101771
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Object segmentation is an important step in the workflow of computational pathology. Deep learning based models generally require large amount of labeled data for precise and reliable prediction. However, collecting labeled data is expensive because it often requires expert knowledge, particularly in medical imaging domain where labels are the result of a time-consuming analysis made by one or more human experts. As nuclei, cells and glands are fundamental objects for downstream analysis in computational pathology/cytology, in this paper we propose NuClick, a CNN-based approach to speed up collecting annotations for these objects requiring minimum interaction from the annotator. We show that for nuclei and cells in histology and cytology images, one click inside each object is enough for NuClick to yield a precise annotation. For multicellular structures such as glands, we propose a novel approach to provide the NuClick with a squiggle as a guiding signal, enabling it to segment the glandular boundaries. These supervisory signals are fed to the network as auxiliary inputs along with RGB channels. With detailed experiments, we show that NuClick is applicable to a wide range of object scales, robust against variations in the user input, adaptable to new domains, and delivers reliable annotations. An instance segmentation model trained on masks generated by NuClick achieved the first rank in LYON19 challenge. As exemplar outputs of our framework, we are releasing two datasets: 1) a dataset of lymphocyte annotations within IHC images, and 2) a dataset of segmented WBCs in blood smear images. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Segmentation of Glomeruli Within Trichrome Images Using Deep Learning
    Korman, Shruti
    Morgan, Laura A.
    Liang, Benjamin
    Cheung, McKenzie G.
    Lin, Christopher Q.
    Mun, Dan
    Nader, Ralph G.
    Belghasem, Mostafa E.
    Henderson, Joel M.
    Francis, Jean M.
    Chitalia, Vipul C.
    Kolachalama, Vijaya B.
    KIDNEY INTERNATIONAL REPORTS, 2019, 4 (07): : 955 - 962
  • [22] Morphology-guided deep learning framework for segmentation of pancreas in computed tomography images
    Qureshi, Touseef Ahmad
    Lynch, Cody
    Azab, Linda
    Xie, Yibin
    Gaddam, Srinavas
    Pandol, Stepehen Jacob
    Li, Debiao
    JOURNAL OF MEDICAL IMAGING, 2022, 9 (02) : 24002
  • [23] Evaluation of Deep Learning Strategies for Nucleus Segmentation in Fluorescence Images
    Caicedo, Juan C.
    Roth, Jonathan
    Goodman, Allen
    Becker, Tim
    Karhohs, Kyle W.
    Broisin, Matthieu
    Molnar, Csaba
    McQuin, Claire
    Singh, Shantanu
    Theis, Fabian J.
    Carpenter, Anne E.
    CYTOMETRY PART A, 2019, 95 (09) : 952 - 965
  • [24] Using deep learning on microscopic images for white blood cell detection and segmentation to assist in leukemia diagnosis
    Ferreira, Fernando Rodrigues Trindade
    do Couto, Loena Marins
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (02)
  • [25] Deep Learning Framework for Liver Tumor Segmentation
    Gupta K.
    Aggarwal S.
    Jha A.
    Habib A.
    Jagtap J.
    Kolhar S.
    Patil S.
    Kotecha K.
    Choudhury T.
    EAI Endorsed Transactions on Pervasive Health and Technology, 2024, 10
  • [26] Deep learning framework for bovine iris segmentation
    Yoon, Heemoon
    Park, Mira
    Lee, Hayoung
    An, Jisoon
    Lee, Taehyun
    Lee, Sang-Hee
    JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY, 2024, 66 (01) : 167 - 177
  • [27] Deep Learning Framework for Liver Segmentation from T1-Weighted MRI Images
    Hossain, Md. Sakib Abrar
    Gul, Sidra
    Chowdhury, Muhammad E. H.
    Khan, Muhammad Salman
    Sumon, Md. Shaheenur Islam
    Bhuiyan, Enamul Haque
    Khandakar, Amith
    Hossain, Maqsud
    Sadique, Abdus
    Al-Hashimi, Israa
    Ayari, Mohamed Arselene
    Mahmud, Sakib
    Alqahtani, Abdulrahman
    Kang, Dae-Ki
    SENSORS, 2023, 23 (21)
  • [28] Segmentation of farmlands in aerial images by deep learning framework with feature fusion and context aggregation modules
    Sultan Daud Khan
    Louai Alarabi
    Saleh Basalamah
    Multimedia Tools and Applications, 2023, 82 : 42353 - 42372
  • [29] Multi-band Feature Images Concrete Crack Segmentation Framework Using Deep Learning
    Zhou, Shuang Xi
    Pan, Yuan
    Guan, Jing yuan
    Wang, Qing
    KSCE JOURNAL OF CIVIL ENGINEERING, 2024, 28 (09) : 3902 - 3912
  • [30] Intracranial hemorrhage segmentation and classification framework in computer tomography images using deep learning techniques
    S. Nafees Ahmed
    P. Prakasam
    Scientific Reports, 15 (1)