Anisotropic elliptic problems involving Hardy-type potentials

被引:19
作者
Della Pietra, Francesco [1 ]
Gavitone, Nunzia [2 ]
机构
[1] Univ Molise, Dipartimento SAVA, Fac Ingn, I-86039 Termoli, CB, Italy
[2] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
关键词
Elliptic boundary value problems; Hardy inequalities; Anisotropic Laplacian; Convex symmetrization; PARABOLIC EQUATIONS; UNIQUENESS PROOF; WULFF THEOREM; SYMMETRIZATION; INEQUALITIES; CONVERGENCE; QUESTIONS; EXISTENCE;
D O I
10.1016/j.jmaa.2012.08.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give existence, uniqueness and regularity of the solutions of problems whose prototype is {-Delta(H)u = lambda/H-o(x)(2)u + f(x) in Omega, u = 0 on partial derivative Omega, where Omega is a bounded open set of R-N, N > 2, and 0 is an element of Omega. Here H is a norm on R-N, H-o is its polar and Delta(H)u = div (H(Du)H-xi(Du)) is the anisotropic Laplacian. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:800 / 813
页数:14
相关论文
共 32 条
[1]  
Alvin A, 1983, METHODS FUNCTIONAL A, P269
[2]   Convex symmetrization and applications [J].
Alvino, A ;
Ferone, V ;
Trombetti, G ;
Lions, PL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (02) :275-293
[3]  
Alvino A., 1977, B UNIONE MAT ITAL, V14, P148
[4]   A NOTION OF TOTAL VARIATION DEPENDING ON A METRIC WITH DISCONTINUOUS COEFFICIENTS [J].
AMAR, M ;
BELLETTINI, G .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1994, 11 (01) :91-133
[5]  
[Anonymous], 1979, Applicable Anal., DOI DOI 10.1080/00036817908839248.5
[6]  
[Anonymous], PURE APPL MATH
[7]   Existence results for nonlinear elliptic equations with degenerate coercivity [J].
Angelo Alvino ;
Lucio Boccardo ;
Vincenzo Ferone ;
Luigi Orsina ;
Guido Trombetti .
Annali di Matematica Pura ed Applicata, 2003, 182 (1) :53-79
[8]  
Azorero JPG, 1998, J DIFFER EQUATIONS, V144, P441
[9]  
Bandle C., 1980, MONOGR STUD MATH, V7
[10]  
Bellettini G., 1996, HOKKAIDO MATH J, V25, P537, DOI DOI 10.14492/HOKMJ/1351516749