Mechanism of Gases Generation during Lithium-Ion Batteries Cycling

被引:105
作者
Galushkin, N. E. [1 ]
Yazvinskaya, N. N. [1 ]
Galushkin, D. N. [1 ]
机构
[1] Don State Tech Univ, Lab Electrochem & Hydrogen Energy, Town Of Shakhty 346500, Rostov Region, Russia
关键词
AQUEOUS CATALYST SYSTEMS; HYDROGEN STORAGE; ETHYLENE CARBONATE; SHIFT REACTION; ELECTROLYTE INTERFACE; METAL DISSOLUTION; CATHODE MATERIALS; THERMAL RUNAWAY; LI; WATER;
D O I
10.1149/2.0041906jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This paper studied the gases release of a graphite//NMC111(LiNi1/3Mn1/3Co1/3O2) cell during cycle in the voltage ranges of 2.6-4.2V and 2.6-4.8V and the temperatures of at 25 degrees C and 60 degrees C. It was proved that the CO2, CO, and H-2 gases are released as a result of electrolyte decomposition. And it shows that the CO and H-2 gases evolution is a direct consequence of the electrochemical reaction of electrolyte decomposition, while the CO2 generation is a consequence of the additional chemical reaction of interaction between the O-2 released from the cathode atomic lattice oxygen and CO released from the same place on the cathode (appearing because of the electrolyte decomposition). That is why at the same electrochemical reaction of electrolyte decomposition, the ratio CO2/CO varies in the wide range from 0.82 to 2.42 depending on cycling conditions (temperature and cutoff voltage). It was proved that a potential-independent H-2 evolution is a consequence of its adsorption in pores of powdered graphite on anode. There was proposed the mechanism of the electrolyte decomposition and the gases evolution in lithium-ion cells at their cycling, which corresponds quantitatively to all obtained experimental results. (C) The Author(s) 2019. Published by ECS.
引用
收藏
页码:A897 / A908
页数:12
相关论文
共 78 条
  • [1] Surface characterization of electrodes from high power lithium-ion batteries
    Andersson, AM
    Abraham, DP
    Haasch, R
    MacLaren, S
    Liu, J
    Amine, K
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (10) : A1358 - A1369
  • [2] Future generations of cathode materials: an automotive industry perspective
    Andre, Dave
    Kim, Sung-Jin
    Lamp, Peter
    Lux, Simon Franz
    Maglia, Filippo
    Paschos, Odysseas
    Stiaszny, Barbara
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (13) : 6709 - 6732
  • [3] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [4] Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems
    Aurbach, D
    Zaban, A
    Ein-Eli, Y
    Weissman, I
    Chusid, O
    Markovsky, B
    Levi, M
    Levi, E
    Schechter, A
    Granot, E
    [J]. JOURNAL OF POWER SOURCES, 1997, 68 (01) : 91 - 98
  • [5] THE BEHAVIOR OF LITHIUM ELECTRODES IN PROPYLENE AND ETHYLENE CARBONATE - THE MAJOR FACTORS THAT INFLUENCE LI CYCLING EFFICIENCY
    AURBACH, D
    GOFER, Y
    BENZION, M
    APED, P
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1992, 339 (1-2): : 451 - 471
  • [6] RECENT STUDIES OF THE LITHIUM LIQUID ELECTROLYTE INTERFACE - ELECTROCHEMICAL, MORPHOLOGICAL AND SPECTRAL STUDIES OF A FEW IMPORTANT SYSTEMS
    AURBACH, D
    ZABAN, A
    GOFER, Y
    ELY, YE
    WEISSMAN, I
    CHUSID, O
    ABRAMSON, O
    [J]. JOURNAL OF POWER SOURCES, 1995, 54 (01) : 76 - 84
  • [7] A Critical Review of Thermal Issues in Lithium-Ion Batteries
    Bandhauer, Todd M.
    Garimella, Srinivas
    Fuller, Thomas F.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) : R1 - R25
  • [8] Performance Degradation and Gassing of Li4Ti5O12/LiMn2O4 Lithium-Ion Cells
    Belharouak, Ilias
    Koenig, Gary M., Jr.
    Tan, Taison
    Yumoto, Hiroyuki
    Ota, Naoki
    Amine, K.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (08) : A1165 - A1170
  • [9] Electrochemistry and safety of Li4Ti5O12 and graphite anodes paired with LiMn2O4 for hybrid electric vehicle Li-ion battery applications
    Belharouak, Ilias
    Koenig, Gary M., Jr.
    Amine, K.
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (23) : 10344 - 10350
  • [10] Gas Evolution at Graphite Anodes Depending on Electrolyte Water Content and SEI Quality Studied by On-Line Electrochemical Mass Spectrometry
    Bernhard, Rebecca
    Metzger, Michael
    Gasteiger, Hubert A.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (10) : A1984 - A1989