Elliptic equations and products of positive definite matrices

被引:5
作者
Conley, CH
Pucci, P
Serrin, J [1 ]
机构
[1] Univ Minnesota, Dept Math, Minneapolis, MN 55455 USA
[2] Univ N Texas, Coll Arts & Sci, Dept Math, Denton, TX 76203 USA
[3] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
关键词
quasilinear singular elliptic inequalities; strong maximum principle; products of Hermitian matrices;
D O I
10.1002/mana.200410317
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present necessary and sufficient conditions under which the symmetrized product of two n x n positive definite Hermitian matrices is still a positive definite matrix (Part I, Sections 2 and 3). These results are then applied to prove the validity of the strong maximum principle, as well as of the compact support principle, for nonnegative C-1 distribution solutions of general quasilinear inequalities, possibly not elliptic at points where the gradient variable is either zero or large (Part III, Sections 9 and 10). In Part II (Sections 4-8) we consider the general problem of finding bounds for the least and greatest eigenvalues of the product of two (not necessarily definite) Hermitian matrices. In particular, we refine earlier results of Strang for this problem. (c) 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:1490 / 1508
页数:19
相关论文
共 12 条
[1]   ESTIMATES FOR THE EIGENVALUES OF THE JORDAN PRODUCT OF HERMITIAN MATRICES [J].
ALIKAKOS, N ;
BATES, PW .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1984, 57 (FEB) :41-56
[2]  
ALIKAKOS N, 1985, ERRATUM LINEAR ALGEB, V65, P282
[3]  
Gustafson K. E., 1997, Numerical range
[4]  
Horn R. A., 1986, Matrix analysis
[5]   EIGENVALUE BOUNDS FOR AB+BA, WITH A,B POSITIVE DEFINITE MATRICES [J].
NICHOLSON, DW .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1979, 24 (APR) :173-183
[6]  
PTAK, 1995, AM MATH MON, V102, P820
[7]   A strong maximum principle and a compact support principle for singular elliptic inequalities [J].
Pucci, P ;
Serrin, J ;
Zou, HH .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1999, 78 (08) :769-789
[8]   The strong maximum principle revisited [J].
Pucci, P ;
Serrin, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 196 (01) :1-66
[9]   A note on the strong maximum principle for elliptic differential inequalities [J].
Pucci, P ;
Serrin, J .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2000, 79 (01) :57-71
[10]  
Pucci P., 2004, J DIFFER EQU, V207, P226, DOI DOI 10.1016/J.JDE.2004.09.002