Fractional (p, q)-Schrodinger Equations with Critical and Supercritical Growth

被引:13
作者
Ambrosio, Vincenzo [1 ]
机构
[1] Univ Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Via Brecce Bianche 12, I-60131 Ancona, Italy
关键词
Fractional; (p; q)-Laplacian problem; Penalization technique; Critical exponent; Ljusternik-Schnirelmann theory; POSITIVE SOLUTIONS; ELLIPTIC PROBLEMS; MULTIPLICITY; LAPLACIAN; REGULARITY;
D O I
10.1007/s00245-022-09893-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we complete the study started in Ambrosio and Radulescu (J Math Pures Appl (9) 142:101-145, 2020) on the concentration phenomena for a class of fractional (p, q)-Schrodinger equations involving the fractional critical Sobolev exponent. More precisely, we focus our attention on the following class of fractional ( p, q)-Laplacian problems: {(-Delta)(p)(s)u + (-Delta)(q)(s)u + V (epsilon x)(u(p-1) + u(q-1)) = f(u) + u(qs*-1) in R-N, u is an element of W-s,W-p (R-N) boolean AND W-s,W-q (R-N), u > 0 in R-N. where epsilon > 0 is a small parameter, s is an element of (0, 1), 1 < p < q < N/s, q(s)* = Nq/N-sq is the fractional critical Sobolev exponent, (-Delta)(r)(s), with r is an element of {p, q}, is the fractional r-Laplacian operator, V : R-N -> R is a positive continuous potential such that inf(partial derivative Lambda) V > inf(Lambda) V for some bounded open set Lambda subset of R-N, and f : R -> R is a continuous nonlinearity with subcritical growth. With the aid of minimax theorems and the Ljusternik-Schnirelmann category theory, we obtain multiple solutions by employing the topological construction of the set where the potential V attains its minimum. We also establish a multiplicity result when f (t) = t(gamma-1) + mu(t tau-1), with 1 < p < q < gamma < q(s)* < t and mu > 0 sufficiently small, by combining a truncation argument with a Moser-type iteration.
引用
收藏
页数:49
相关论文
共 35 条
[11]  
Bisci GM, 2016, ENCYCLOP MATH APPL, V162
[12]  
Chabrowski J., 1997, ADV DIFFER EQU-NY, P231
[13]   On the stationary solutions of generalized reaction diffusion equations with p&q-Laplacian [J].
Cherfils, L ;
Il'Yasov, Y .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2005, 4 (01) :9-22
[14]   Lipschitz Bounds and Nonautonomous Integrals [J].
De Filippis, Cristiana ;
Mingione, Giuseppe .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 242 (02) :973-1057
[15]   Holder regularity for nonlocal double phase equations [J].
De Filippis, Cristiana ;
Palatucci, Giampiero .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (01) :547-586
[16]   Global Bifurcation for Fractional p-Laplacian and an Application [J].
Del Pezzo, Leandro M. ;
Quaas, Alexander .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2016, 35 (04) :411-447
[17]   Local mountain passes for semilinear elliptic problems in unbounded domains [J].
delPino, M ;
Felmer, PL .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1996, 4 (02) :121-137
[18]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[19]   VARIATIONAL PRINCIPLE [J].
EKELAND, I .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 47 (02) :324-353
[20]   Positive solutions for some quasilinear equations with critical and supercritical growth [J].
Figueiredo, Giovany M. ;
Furtado, Marcelo F. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (07) :1600-1616