On the crystal graph description of the stable Weyl group multiple Dirichlet series

被引:0
作者
Cai, Yuanqing [1 ]
机构
[1] Kyoto Univ, Dept Math, Sakyo Ku, Kitashirakawa Oiwake Cho, Kyoto 6068502, Japan
基金
欧洲研究理事会; 欧盟地平线“2020”; 日本学术振兴会;
关键词
Weyl group multiple Dirichlet series; BZL pattern; Crystal graph; Braidless weight; Minimal representative; EISENSTEIN SERIES; P-PARTS; COEFFICIENTS;
D O I
10.1016/j.jnt.2020.01.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a semisimple Lie algebra admitting a good enumeration, we prove a parametrization for the elements in its Weyl group. As an application, we give a coordinate-free comparison between the crystal graph description (when it is known) and the Lie-theoretic description of the Weyl group multiple Dirichlet series in the stable range. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:186 / 215
页数:30
相关论文
共 28 条
[1]  
[Anonymous], 2002, Grad. Stud. Math.
[2]   WEYL GROUP MULTIPLE DIRICHLET SERIES OF TYPE C [J].
Beineke, Jennifer ;
Brubaker, Benjamin ;
Frechette, Sharon .
PACIFIC JOURNAL OF MATHEMATICS, 2011, 254 (01) :11-46
[3]  
Borel A., 1972, Publications mathematiques de l'IHES, V41, P253
[4]  
Bourbaki N., 2002, ELEMENTS MATH, DOI DOI 10.1007/978-3-540-89394-3
[5]  
Brubaker B, 2008, PROG MATH, V258, P1
[6]   On Kubota's Dirichlet series [J].
Brubaker, Ben ;
Bump, Daniel .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 598 :159-184
[7]   Weyl group multiple Dirichlet series II: The stable case [J].
Brubaker, Ben ;
Bump, Daniel ;
Friedberg, Solomon .
INVENTIONES MATHEMATICAE, 2006, 165 (02) :325-355
[8]   Schur Polynomials and The Yang-Baxter Equation [J].
Brubaker, Ben ;
Bump, Daniel ;
Friedberg, Solomon .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 308 (02) :281-301
[9]   Weyl group multiple Dirichlet series, Eisenstein series and crystal bases [J].
Brubaker, Ben ;
Bump, Daniel ;
Friedberg, Solomon .
ANNALS OF MATHEMATICS, 2011, 173 (02) :1081-1120
[10]  
Brubaker Ben, 2011, ANN MATH STUDIES, V175