Mechanical properties of the wave-swept kelp Egregia menziesii change with season, growth rate and herbivore wounds

被引:28
作者
Burnett, Nicholas P. [1 ,2 ]
Koehl, M. A. R. [1 ]
机构
[1] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA
[2] Univ Calif Davis, Dept Neurobiol Physiol & Behav, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
Macroalgae; Material properties; Wave exposure; Damage; Hydrodynamic forces; GIANT-KELP; HYDRODYNAMIC-FORCES; BENTHIC ORGANISMS; FLOW; STRENGTH; ALGA; DRAG; SIZE; CONSEQUENCES; CANOPIES;
D O I
10.1242/jeb.190595
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The resistance of macroalgae to damage by hydrodynamic forces depends on the mechanical properties of their tissues. Although factors such as water-flow environment, algal growth rate and damage by herbivores have been shown to influence various material properties of macroalgal tissues, the interplay of these factors as they change seasonally and affect algal mechanical performance has not been worked out. We used the perennial kelp Egregia menziesii to study how the material properties of the rachis supporting a frond changed seasonally over a 2 year period, and how those changes correlated with seasonal patterns of the environment, growth rate and herbivore load. Rachis tissue became stiffer, stronger and less extensible with age (distance from the meristem). Thus, slowly growing rachises were stiffer, stronger and tougher than rapidly growing ones. Growth rates were highest in spring and summer when upwelling and long periods of daylight occurred. Therefore, rachis tissue was most resistant to damage in the winter, when waves were large as a result of seasonal storms. Herbivory was greatest during summer, when rachis growth rates were high. Unlike other macroalgae, E. menziesii did not respond to herbivore damage by increasing rachis tissue strength, but rather by growing in width so that the cross-sectional area of the wounded rachis was increased. The relative timing of environmental factors that affect growth rates (e.g. upwelling supply of nutrients, daylight duration) and of those that can damage macroalgae (e.g. winter storms, summer herbivore outbreaks) can influence the material properties and thus the mechanical performance of macroalgae.
引用
收藏
页数:13
相关论文
共 76 条
[11]   Knots and tangles weaken kelp fronds while increasing drag forces and epifauna on the kelp [J].
Burnett, Nicholas P. ;
Koehl, M. A. R. .
JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY, 2018, 508 :13-20
[12]   Pneumatocysts provide buoyancy with minimal effect on drag for kelp in wave-driven flow [J].
Burnett, Nicholas P. ;
Koehl, M. A. R. .
JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY, 2017, 497 :1-10
[13]  
Cai WJ, 2014, NAT CLIM CHANGE, V4, P111, DOI [10.1038/nclimate2100, 10.1038/NCLIMATE2100]
[14]   DRAG AND DISLODGMENT OF AN INTERTIDAL MACROALGA - CONSEQUENCES OF MORPHOLOGICAL VARIATION IN MASTOCARPUS-PAPILLATUS KUTZING [J].
CARRINGTON, E .
JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY, 1990, 139 (03) :185-200
[15]   Life history phases and the biomechanical properties of the red alga Chondrus crispus (Rhodophyta) [J].
Carrington, E ;
Grace, SP ;
Chopin, T .
JOURNAL OF PHYCOLOGY, 2001, 37 (05) :699-704
[16]  
Chapman John W., 2007, P545
[17]  
Dayton PK, 1999, ECOL MONOGR, V69, P219, DOI 10.1890/0012-9615(1999)069[0219:TASSOK]2.0.CO
[18]  
2
[19]   Size, not morphology, determines hydrodynamic performance of a kelp during peak flow [J].
de Bettignies, Thibaut ;
Wernberg, Thomas ;
Lavery, Paul S. .
MARINE BIOLOGY, 2013, 160 (04) :843-851
[20]   Wounded kelps: patterns and susceptibility to breakage [J].
de Bettignies, Thibaut ;
Thomsen, Mads S. ;
Wernberg, Thomas .
AQUATIC BIOLOGY, 2012, 17 (03) :223-233