Information Theoretical Analysis of Quantum Optimal Control

被引:88
作者
Lloyd, S. [1 ]
Montangero, S. [2 ,3 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] Univ Ulm, Inst Quantum Informat Proc, D-89069 Ulm, Germany
[3] Univ Ulm, IQST, D-89069 Ulm, Germany
关键词
CONTROLLABILITY;
D O I
10.1103/PhysRevLett.113.010502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the relations between classical information and the feasibility of accurate manipulation of quantum system dynamics. We show that if an efficient classical representation of the dynamics exists, optimal control problems on many-body quantum systems can be solved efficiently with finite precision. In particular, one-dimensional slightly entangled dynamics can be efficiently controlled. We provide a bound for the minimal time necessary to perform the optimal process given the bandwidth of the control pulse, which is the continuous version of the Solovay-Kitaev theorem. Finally, we quantify how noise affects the presented results.
引用
收藏
页数:5
相关论文
共 53 条
[1]  
Aaronson Scott., 2013, Quantum_computing_since_Democritus
[2]   Controllability properties for finite dimensional quantum Markovian master equations [J].
Altafini, C .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (06) :2357-2372
[3]   Speed limits for quantum gates in multiqubit systems [J].
Ashhab, S. ;
de Groot, P. C. ;
Nori, Franco .
PHYSICAL REVIEW A, 2012, 85 (05)
[4]  
Astolfi Alessandro, 2003, P 2 IFAC WORK SEV SP
[5]  
Bason MG, 2012, NAT PHYS, V8, P147, DOI [10.1038/NPHYS2170, 10.1038/nphys2170]
[6]   QUANTUM DECAY AND THE MANDELSTAM-TAMM TIME ENERGY INEQUALITY [J].
BHATTACHARYYA, K .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (13) :2993-2996
[7]  
Bläser M, 2012, LECT NOTES COMPUT SC, V7464, P198, DOI 10.1007/978-3-642-32589-2_20
[8]   Scalable quantum computation via local control of only two qubits [J].
Burgarth, Daniel ;
Maruyama, Koji ;
Murphy, Michael ;
Montangero, Simone ;
Calarco, Tommaso ;
Nori, Franco ;
Plenio, Martin B. .
PHYSICAL REVIEW A, 2010, 81 (04)
[9]   Complexity of controlling quantum many-body dynamics [J].
Caneva, T. ;
Silva, A. ;
Fazio, R. ;
Lloyd, S. ;
Calarco, T. ;
Montangero, S. .
PHYSICAL REVIEW A, 2014, 89 (04)
[10]   Optimal Control at the Quantum Speed Limit [J].
Caneva, T. ;
Murphy, M. ;
Calarco, T. ;
Fazio, R. ;
Montangero, S. ;
Giovannetti, V. ;
Santoro, G. E. .
PHYSICAL REVIEW LETTERS, 2009, 103 (24)