A class of permutation trinomials over finite fields of odd characteristic

被引:18
作者
Tu, Ziran [1 ]
Zeng, Xiangyong [2 ]
机构
[1] Henan Univ Sci & Technol, Sch Math & Stat, Luoyang 471003, Peoples R China
[2] Hubei Univ, Fac Math & Stat, Hubei Key Lab Appl Math, Wuhan 430062, Hubei, Peoples R China
来源
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES | 2019年 / 11卷 / 04期
基金
中国国家自然科学基金;
关键词
Finite field; Permutation trinomial; Trace function; POLYNOMIALS; BINOMIALS;
D O I
10.1007/s12095-018-0307-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper studies the permutation behavior of the polynomial f(x)=x+a1xq(q-1)+1+a2x2(q-1)+1 in Fq2[x] for odd q, and finds a set of the coefficient pairs (a1,a2) that leads f(x) to be a permutation of Fq2. We transform the problem of proving that f is a permutation into determining the number of solutions to some low-degree equations in the unit circle of F(q)2.
引用
收藏
页码:563 / 583
页数:21
相关论文
共 24 条
[1]  
Akbary A., 2007, Int. J. Math. Math. Sci, V2007, P23408
[2]   On the lifted Zetterberg code [J].
Alahmadi, Adel ;
Alhazmi, Hussain ;
Helleseth, Tor ;
Hijazi, Rola ;
Muthana, Najat ;
Sole, Patrick .
DESIGNS CODES AND CRYPTOGRAPHY, 2016, 80 (03) :561-576
[3]  
[Anonymous], [No title captured]
[4]  
Dickson L.E., 1986, ANN MATH, V11, P65, DOI [10.2307/1967217, DOI 10.2307/1967217]
[5]   PERMUTATION TRINOMIALS OVER FINITE FIELDS WITH EVEN CHARACTERISTIC [J].
Ding, Cunsheng ;
Qu, Longjiang ;
Wang, Qiang ;
Yuan, Jin ;
Yuan, Pingzhi .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (01) :79-92
[6]   ALGEBRAIC DECODING OF THE ZETTERBERG CODES [J].
DODUNEKOV, SM ;
NILSSON, JEM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (05) :1570-1573
[7]  
Fernando N, ARXIV160907162V1
[8]   Some new classes of permutation trinomials over finite fields with even characteristic [J].
Gupta, Rohit ;
Sharma, R. K. .
FINITE FIELDS AND THEIR APPLICATIONS, 2016, 41 :89-96
[9]  
Hermite C., 1863, C.R. Acad. Sci. Paris, V57, P750
[10]   A survey of permutation binomials and trinomials over finite fields [J].
Hou, Xiang-dong .
TOPICS IN FINITE FIELDS, 2015, 632 :177-+