A Numerical Method for Delayed Fractional-Order Differential Equations: Based on G-L Definition

被引:94
作者
Wang, Zhen [1 ,2 ]
Huang, Xia [3 ]
Zhou, Jianping [4 ]
机构
[1] Shandong Univ Sci & Technol, Coll Informat Sci & Engn, Qingdao 266590, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Automat, Nanjing 210094, Jiangsu, Peoples R China
[3] Shandong Univ Sci & Technol, Coll Informat & Elect Engn, Key Lab Robot & Intelligent Technol, Qingdao 266590, Peoples R China
[4] Anhui Univ Technol, Sch Comp Sci, Maanshan 243002, Peoples R China
来源
APPLIED MATHEMATICS & INFORMATION SCIENCES | 2013年 / 7卷 / 02期
基金
中国国家自然科学基金;
关键词
Delay; fractional-order differential equations; Grunwald-Letnikov derivative; PREDICTOR-CORRECTOR APPROACH; SYSTEM;
D O I
10.12785/amis/072L22
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a numerical method for nonlinear fractional-order differential equations with constant or time-varying delay is devised. The order here is an arbitrary positive real number, and the differential operator is the Grunwald-Letnikov derivative. The detailed error analysis for this algorithm is given, meanwhile, the convergence of the iteration algorithm is proved. Compared with the exact analytical solution, a numerical example is provided to illustrate the effectiveness of the proposed method.
引用
收藏
页码:525 / 529
页数:5
相关论文
共 35 条
[11]   Detailed error analysis for a fractional Adams method [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD .
NUMERICAL ALGORITHMS, 2004, 36 (01) :31-52
[12]   Algorithms for the fractional calculus: A selection of numerical methods [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD ;
Luchko, Y .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (6-8) :743-773
[13]   A predictor-corrector approach for the numerical solution of fractional differential equations [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :3-22
[14]   An investigation of some nonclassical methods for the numerical approximation of Caputo-type fractional derivatives [J].
Diethelm, Kai .
NUMERICAL ALGORITHMS, 2008, 47 (04) :361-390
[15]   An Improvement of a Nonclassical Numerical Method for the Computation of Fractional Derivatives [J].
Diethelm, Kai .
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2009, 131 (01) :0145021-0145024
[16]   The numerical solution of linear multi-term fractional differential equations: systems of equations [J].
Edwards, JT ;
Ford, NJ ;
Simpson, AC .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 148 (02) :401-418
[17]   The numerical solution of fractional differential equations: Speed versus accuracy [J].
Ford, NJ ;
Simpson, AC .
NUMERICAL ALGORITHMS, 2001, 26 (04) :333-346
[18]   Explicit methods for fractional differential equations and their stability properties [J].
Galeone, Luciano ;
Garrappa, Roberto .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 228 (02) :548-560
[19]   Fractional Adams-Moulton methods [J].
Galeone, Luciano ;
Garrappa, Roberto .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 79 (04) :1358-1367
[20]   On some explicit Adams multistep methods for fractional differential equations [J].
Garrappa, Roberto .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 229 (02) :392-399