A Numerical Method for Delayed Fractional-Order Differential Equations: Based on G-L Definition

被引:94
作者
Wang, Zhen [1 ,2 ]
Huang, Xia [3 ]
Zhou, Jianping [4 ]
机构
[1] Shandong Univ Sci & Technol, Coll Informat Sci & Engn, Qingdao 266590, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Automat, Nanjing 210094, Jiangsu, Peoples R China
[3] Shandong Univ Sci & Technol, Coll Informat & Elect Engn, Key Lab Robot & Intelligent Technol, Qingdao 266590, Peoples R China
[4] Anhui Univ Technol, Sch Comp Sci, Maanshan 243002, Peoples R China
来源
APPLIED MATHEMATICS & INFORMATION SCIENCES | 2013年 / 7卷 / 02期
基金
中国国家自然科学基金;
关键词
Delay; fractional-order differential equations; Grunwald-Letnikov derivative; PREDICTOR-CORRECTOR APPROACH; SYSTEM;
D O I
10.12785/amis/072L22
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a numerical method for nonlinear fractional-order differential equations with constant or time-varying delay is devised. The order here is an arbitrary positive real number, and the differential operator is the Grunwald-Letnikov derivative. The detailed error analysis for this algorithm is given, meanwhile, the convergence of the iteration algorithm is proved. Compared with the exact analytical solution, a numerical example is provided to illustrate the effectiveness of the proposed method.
引用
收藏
页码:525 / 529
页数:5
相关论文
共 35 条
[1]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[2]  
[Anonymous], 2001, APPL FRACTIONAL CALC
[3]  
BUTZER P., 2000, INTRO FRACTIONAL CAL
[4]   Robust controllability of interval fractional order linear time invariant systems [J].
Chen, YangQuan ;
Ahn, Hyo-Sung ;
Xue, Dingyu .
SIGNAL PROCESSING, 2006, 86 (10) :2794-2802
[5]   Analytical stability bound for a class of delayed fractional-order dynamic systems [J].
Chen, YQ ;
Moore, KL .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :191-200
[6]   Control of a fractional-order economical system via sliding mode [J].
Dadras, Sara ;
Momeni, Hamid Reza .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (12) :2434-2442
[7]   Analysis of a system of fractional differential equations [J].
Daftardar-Gejji, V ;
Babakhani, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 293 (02) :511-522
[8]   Short memory principle and a predictor-corrector approach for fractional differential equations [J].
Deng, Weihua .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 206 (01) :174-188
[9]   Multi-order fractional differential equations and their numerical solution [J].
Diethelm, K ;
Ford, NJ .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 154 (03) :621-640
[10]   Analysis of fractional differential equations [J].
Diethelm, K ;
Ford, NJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 265 (02) :229-248