EXISTENCE OF WEAK SOLUTIONS FOR A NONUNIFORMLY ELLIPTIC NONLINEAR SYSTEM IN RN

被引:0
作者
Nguyen Thanh Chung [1 ]
机构
[1] Quang Binh Univ, Dept Math & Informat, Dong Hoi, Vietnam
关键词
Nonuniformly elliptic; nonlinear systems; mountain pass theorem; weakly continuously differentiable functional;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the nonuniformly elliptic, nonlinear system - div(h(1)(x)del u) + a(x)u = f(x, u, v) in R-N, - div(h(2)(x)del v) + b(x)v = g(x, u, v) in R-N. Under growth and regularity conditions on the nonlinearities f and g, we obtain weak solutions in a subspace of the Sobolev space H-1(R-N, R-2) by applying a variant of the Mountain Pass Theorem.
引用
收藏
页数:10
相关论文
共 17 条
[1]  
Abakhti-Mchachti A., 1992, PITMAN RES NOTES MAT, V266, P92
[2]  
Adams R., 1975, Sobolev Spaces
[3]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[4]  
Ambrosetti A., 1997, P 2 SCH ICTP TRIEST
[5]  
[Anonymous], 1992, THEORIE APPL
[6]  
Berestycki H., 1984, ARCH RATION MECH AN, V82, P313
[7]  
Costa D. G., 1994, ELECT J DIFFERENTIAL, P1
[8]   Mountain pass solutions to equations of p-Laplacian type [J].
De Nápoli, P ;
Mariani, MC .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (07) :1205-1219
[9]   Nonuniformly elliptic equations of p-Laplacian type [J].
Duc, DM ;
Vu, NT .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 61 (08) :1483-1495
[10]  
DUC DM, 1989, J LOND MATH SOC, V40, P420