NONLINEAR METRIC LEARNING FOR VISUAL TRACKING

被引:0
作者
Lu, Jiwen [1 ,2 ]
Hu, Junlin [3 ]
Tan, Yap-Peng [3 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[2] Beijing Adv Innovat Ctr Iniaging Technol, Beijing, Peoples R China
[3] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
来源
2016 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO (ICME) | 2016年
关键词
Nonlinear metric learning; visual tracking; similarity learning;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a nonlinear metric learning (NML) method for visual tracking. Instead of utilizing the hand-crafted similarity measures, the NML tracker can automatically learn distance metrics from training data itself to categorize object and backgrounds in visual tracking. To exploit the nonlinear structures of samples, the NML tracker seeks several hierarchical nonlinear transformations by adopting the neural network architectures to map candidates and template into a latent subspace where the distance of each positive pair is smaller than that of each negative pair. In this learned metric space, the candidate that maintains the minimum distance to the template is treated as the final tracking result. Evaluation on 20 challenging videos shows the efficacy of the NML tracker.
引用
收藏
页数:6
相关论文
共 26 条
[1]  
Babenko B, 2009, PROC CVPR IEEE, P983, DOI 10.1109/CVPRW.2009.5206737
[2]  
Bao CL, 2012, PROC CVPR IEEE, P1830, DOI 10.1109/CVPR.2012.6247881
[3]  
Elgammal A, 2003, PROC CVPR IEEE, P781
[4]  
Hare S, 2011, IEEE I CONF COMP VIS, P263, DOI 10.1109/ICCV.2011.6126251
[5]   High-Speed Tracking with Kernelized Correlation Filters [J].
Henriques, Joao F. ;
Caseiro, Rui ;
Martins, Pedro ;
Batista, Jorge .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (03) :583-596
[6]   Tracking via Robust Multi-Task Multi-View Joint Sparse Representation [J].
Hong, Zhibin ;
Mei, Xue ;
Prokhorov, Danil ;
Tao, Dacheng .
2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, :649-656
[7]  
Hu J, 2015, IEEE T CIRC SYST VID, P1
[8]   Discriminative Deep Metric Learning for Face Verification in the Wild [J].
Hu, Junlin ;
Lu, Jiwen ;
Tan, Yap-Peng .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :1875-1882
[9]   Robust online appearance models for visual tracking [J].
Jepson, AD ;
Fleet, DJ ;
El-Maraghi, TF .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (10) :1296-1311
[10]  
Jiang N, 2012, PROC CVPR IEEE, P1956, DOI 10.1109/CVPR.2012.6247897