Vanadium Substitution of LiFePO4 Cathode Materials To Enhance the Capacity of LiFePO4-Based Lithium-Ion Batteries

被引:62
作者
Chiang, Ching-Yu [1 ,2 ]
Su, Hui-Chia [1 ]
Wu, Pin-Jiun [1 ]
Liu, Heng-Jui [3 ]
Hu, Chih-Wei [1 ,4 ]
Sharma, Neeraj [5 ]
Peterson, Vanessa K. [5 ]
Hsieh, Han-Wei [6 ]
Lin, Yu-Fang [6 ]
Chou, Wu-Ching [2 ]
Lee, Chih-Hao [1 ,4 ]
Lee, Jyh-Fu [1 ,5 ]
Shew, Bor-Yuan [1 ]
机构
[1] Natl Synchrotron Radiat Res Ctr, Hsinchu 30076, Taiwan
[2] Natl Chiao Tung Univ, Inst & Dept Electrophys, Hsinchu 30010, Taiwan
[3] Natl Tsing Hua Univ, Dept Mat Sci, Hsinchu 30013, Taiwan
[4] Natl Tsing Hua Univ, Dept Engn & Syst Sci, Hsinchu 30013, Taiwan
[5] Australian Nucl Sci & Technol Org, Kirrawee Dc, NSW 2232, Australia
[6] Adv Lithium Electrochem Co Ltd, Tao Yuan 33048, Taiwan
关键词
ELECTROCHEMICAL PERFORMANCE; FE;
D O I
10.1021/jp307047w
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The mechanism of enhancing the capacity of the LiFePO4 cathodes in lithium ion batteries by the addition of a small amount of vanadium, which locate on the lithium site and induce lithium vacancies in the crystal structure, is reported in this article. As a result, the capacity increases from 138 mAh/g found for pristine LiFePO4 to 155 mAh/g for the V-added compound, and the conductivity increases from 4.75 x 10(-4) S/cm for the LiFePO4 without V addition to 1.9 x 10(-2) S/cm for the V-added compound. A possible model to facilitate the enhancement of conductivity and capacity is described with evidence supported by X-ray powder diffraction, X-ray absorption spectroscopy, and neutron powder diffraction data.
引用
收藏
页码:24424 / 24429
页数:6
相关论文
共 34 条
[1]   The source of first-cycle capacity loss in LiFePO4 [J].
Andersson, AS ;
Thomas, JO .
JOURNAL OF POWER SOURCES, 2001, 97-8 :498-502
[2]  
Chang SH, 2012, CHINESE J PHYS, V50, P220
[3]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[4]   A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode [J].
Croce, F ;
D'Epifanio, A ;
Hassoun, J ;
Deptula, A ;
Olczac, T ;
Scrosati, B .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2002, 5 (03) :A47-A50
[5]   Spectroscopic studies of LixFePO4 and LixM0.03Fe0.97PO4 (M=Cr,Cu,Al,Ti) -: art. no. 024105 [J].
Gouveia, DX ;
Lemos, V ;
de Paiva, JAC ;
Souza, AG ;
Mendes, J ;
Lala, SM ;
Montoro, LA ;
Rosolen, JM .
PHYSICAL REVIEW B, 2005, 72 (02)
[6]   Nano-network electronic conduction in iron and nickel olivine phosphates [J].
Herle, PS ;
Ellis, B ;
Coombs, N ;
Nazar, LF .
NATURE MATERIALS, 2004, 3 (03) :147-152
[7]   Vanadium Modified LiFePO4 Cathode for Li-Ion Batteries [J].
Hong, Jian ;
Wang, C. S. ;
Chen, X. ;
Upreti, S. ;
Whittingham, M. Stanley .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2009, 12 (02) :A33-A38
[8]  
KROGER FA, 1956, SOLID STATE PHYS, V3, P307
[9]   Optimized chemical stability and electrochemical performance of LiFePO4 composite materials obtained by ZnO coating [J].
Leon, B. ;
Vicente, C. Perez ;
Tirado, J. L. ;
Biensan, Ph. ;
Tessier, C. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (03) :A211-A216
[10]   Echidna - the new high-resolution powder diffractometer being built at OPAL [J].
Liss, Klaus-Dieter ;
Hunter, Brett ;
Hagen, Mark ;
Noakes, Terrence ;
Kennedy, Shane .
PHYSICA B-CONDENSED MATTER, 2006, 385-86 :1010-1012