The direct variational optimization of the ground-state two-electron reduced-density matrix (2-RDM) is typically performed under ensemble N-representability conditions. Accordingly, variationally obtained 2-RDMs for degenerate ground states may not represent a pure state. When considering only ground-state energetics, the ensemble nature of the 2-RDM is of little consequence. However, the use of ensemble densities within an extended random phase approximation (ERPA) yields astonishingly poor estimates of excitation energies, even for simple atomic systems [H. van Aggelen et al., Comput. Theor. Chem. 1003, 50-54 (2013)]. Here, we outline an approach for the direct variational optimization of ground-state 2-RDMs that satisfy pure-state N-representability known as generalized Pauli constraints. Within the ERPA, 2-RDMs that satisfy both ensemble conditions and the generalized Pauli constraints yield much more reliable estimates of excitation energies than those that satisfy only ensemble conditions. Published by AIP Publishing.