Variational optimization of the two-electron reduced-density matrix under pure-state N-representability conditions

被引:18
作者
DePrince, A. Eugene, III [1 ]
机构
[1] Florida State Univ, Dept Chem & Biochem, Tallahassee, FL 32306 USA
基金
美国国家科学基金会;
关键词
GROUND-STATE;
D O I
10.1063/1.4965888
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The direct variational optimization of the ground-state two-electron reduced-density matrix (2-RDM) is typically performed under ensemble N-representability conditions. Accordingly, variationally obtained 2-RDMs for degenerate ground states may not represent a pure state. When considering only ground-state energetics, the ensemble nature of the 2-RDM is of little consequence. However, the use of ensemble densities within an extended random phase approximation (ERPA) yields astonishingly poor estimates of excitation energies, even for simple atomic systems [H. van Aggelen et al., Comput. Theor. Chem. 1003, 50-54 (2013)]. Here, we outline an approach for the direct variational optimization of ground-state 2-RDMs that satisfy pure-state N-representability known as generalized Pauli constraints. Within the ERPA, 2-RDMs that satisfy both ensemble conditions and the generalized Pauli constraints yield much more reliable estimates of excitation energies than those that satisfy only ensemble conditions. Published by AIP Publishing.
引用
收藏
页数:6
相关论文
empty
未找到相关数据