A 1.4mW to 119mW, Wide Output Power Range Energy Harvesting System With 2-D Fast MPPT Based on HC for 1k to 50k Illuminated Solar Cell

被引:12
作者
Choi, Eunho [1 ]
Namgoong, Gyeongho [1 ]
Park, Woojin [1 ]
Kim, Jiwon [2 ]
Kim, Suhwan [3 ]
Lee, Bonyoung [1 ]
Bien, Franklin [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Sch Elect Engn, Ulsan 44919, South Korea
[2] LX Semicon, Seocho 06763, South Korea
[3] Korea Adv Inst Sci & Technol, Daejeon, South Korea
基金
新加坡国家研究基金会;
关键词
Energy harvesting; Maximum power point trackers; Solar power generation; Photovoltaic systems; Microprocessors; Computer architecture; Transducers; 2-dimensional fast maximum power point tracking (2-D FMPPT); 3-step mode; dynamic peak transducer power sensor (DPTPS); hill climbing (HC); K-VOC; photovoltaic (PV) energy harvesting system; POINT TRACKING; EFFICIENCY; CIRCUIT;
D O I
10.1109/TCSII.2022.3185392
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A photovoltaic (PV) energy harvesting system with 2-Dimensional Fast Maximum Power Point Tracking (2-D FMPPT), based on the hill climbing (HC) MPPT technique is proposed. The 3-step MPPT modes for the energy harvesting system are employed to obtain KVOC that is independent of environmental effects such as irradiance and radiated temperature. The system consists of a dynamic peak transducer power sensor (DPTPS), Coarse (1st) FMPPT mode, Ton Increment/Decrement Mode, Fine (2nd) mode, MPPT logics, and a controller. The system can handle a voltage range of 0.5 V to 2.4 V and a power range of 1.4 mW to 119 mW. A peak MPPT efficiency of 99.4% and over 96.1% MPPT efficiency in 1 k to 50 k illuminance are achieved. The proposed system is fabricated on 0.18-mu mCMOS process and occupies an active area of 1.4 mm(2).
引用
收藏
页码:4389 / 4393
页数:5
相关论文
共 12 条
[1]   Platform Architecture for Solar, Thermal, and Vibration Energy Combining With MPPT and Single Inductor [J].
Bandyopadhyay, Saurav ;
Chandrakasan, Anantha P. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2012, 47 (09) :2199-2215
[2]   Comparison of photovoltaic array maximum power point tracking techniques [J].
Esram, Trishan ;
Chapman, Patrick L. .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2007, 22 (02) :439-449
[3]   Solar cell efficiency tables (version 49) [J].
Green, Martin A. ;
Emery, Keith ;
Hishikawa, Yoshihiro ;
Warta, Wilhelm ;
Dunlop, Ewan D. ;
Levi, Dean H. ;
Ho-Baillie, Anita W. Y. .
PROGRESS IN PHOTOVOLTAICS, 2017, 25 (01) :3-13
[4]   A 1-mW Solar-Energy-Harvesting Circuit Using an Adaptive MPPT With a SAR and a Counter [J].
Kim, Hoonki ;
Min, Young-Jae ;
Jeong, Chan-Hui ;
Kim, Kyu-Young ;
Kim, Chulwoo ;
Kim, Soo-Won .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2013, 60 (06) :331-335
[5]   An Energy-Efficient Fast Maximum Power Point Tracking Circuit in an 800-μW Photovoltaic Energy Harvester [J].
Kim, Hoonki ;
Kim, Sangjin ;
Kwon, Chan-Keun ;
Min, Young-Jae ;
Kim, Chulwoo ;
Kim, Soo-Won .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2013, 28 (06) :2927-2935
[6]  
Lam HYH, 2004, 2004 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 5, PROCEEDINGS, P828
[7]   A 0.31-1 GHz Fast-Corrected Duty-Cycle Corrector With Successive Approximation Register for DDR DRAM Applications [J].
Min, Young-Jae ;
Jeong, Chan-Hui ;
Kim, Kyu-Young ;
Choi, Won Ho ;
Son, Jong-Pil ;
Kim, Chulwoo ;
Kim, Soo-Won .
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2012, 20 (08) :1524-1528
[8]   A Self-Adaptive Time-Based MPPT With 96.2% Tracking Efficiency and a Wide Tracking Range of 10 μA to 1 mA for IoT Applications [J].
Rawy, Karim ;
Kalathiparambil, Felix ;
Maurath, Dominic ;
Kim, Tony Tae-Hyoung .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2017, 64 (09) :2334-2345
[9]  
Tsai TH, 2013, ISSCC DIG TECH PAP I, V56, P72, DOI 10.1109/ISSCC.2013.6487642
[10]   A 0.65-mW-to-1-W Photovoltaic Energy Harvester With Irradiance-Aware Auto-Configurable Hybrid MPPT Achieving >95% MPPT Efficiency and 2.9-ms FOCV Transient Time [J].
Uprety, Sandip ;
Lee, Hoi .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2021, 56 (06) :1827-1836