Bioethanol production from carbohydrate-enriched residual biomass obtained after lipid extraction of Chlorella sp KR-1

被引:70
作者
Lee, Ok Kyung [1 ]
Oh, You-Kwan [2 ]
Lee, Eun Yeol [1 ]
机构
[1] Kyung Hee Univ, Dept Chem Engn, Gyeonggi Do 446701, South Korea
[2] Korea Inst Energy Res, Clean Fuel Dept, Daejeon 305343, South Korea
基金
新加坡国家研究基金会;
关键词
Chlorella sp KR-1; Residual biomass; Saccharification; Bioethanol fermentation; MICROALGAE; BIOFUELS; TRANSESTERIFICATION; LIGNOCELLULOSE; FERMENTATION; BIODIESEL; VULGARIS; ETHANOL; STATE;
D O I
10.1016/j.biortech.2015.07.040
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The residual biomass of Chlorella sp. KR-1 obtained after lipid extraction was used for saccharification and bioethanol production. The carbohydrate was saccharified using simple enzymatic and chemical methods using Pectinex at pH 5.5 and 45 degrees C and 0.3 N HCl at 121 degrees C for 15 min with 76.9% and 98.2% yield, respectively, without any pretreatment. The residual biomass contained 49.7% carbohydrate consisting of 82.4% fermentable sugar and 17.6% non-fermentable sugar, which is valuable for bioethanol fermentation. Approximately 98.2% of the total carbohydrate was converted into monosaccharide (fermentable + non-fermentable sugar) using dilute acid saccharification. The fermentable sugar was subsequently fermented to bioethanol through separate hydrolysis and fermentation with a fermentation yield of 79.3%. Overall, 0.4 g ethanol/g fermentable sugar and 0.16 g ethanol/g residual biomass were produced. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:22 / 27
页数:6
相关论文
共 34 条
[1]  
[Anonymous], AGR J
[2]   Conversion of C6 and C5 sugars in undetoxified wet exploded bagasse hydrolysates using Scheffersomyces (Pichia) stipitis CBS6054 [J].
Biswas, Rajib ;
Uellendahl, Hinrich ;
Ahring, Birgitte K. .
AMB EXPRESS, 2013, 3 :1-7
[3]   Xylanase and pectinase production by Aspergillus awamori on grape pomace in solid state fermentation [J].
Botella, Carolina ;
Diaz, Ana ;
de Ory, Ignacio ;
Webb, Colin ;
Blandino, Ana .
PROCESS BIOCHEMISTRY, 2007, 42 (01) :98-101
[4]   Biodiesel from microalgae [J].
Chisti, Yusuf .
BIOTECHNOLOGY ADVANCES, 2007, 25 (03) :294-306
[5]   Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production [J].
Gerken, Henri G. ;
Donohoe, Bryon ;
Knoshaug, Eric P. .
PLANTA, 2013, 237 (01) :239-253
[6]   Hemicelluloses for fuel ethanol: A review [J].
Girio, F. M. ;
Fonseca, C. ;
Carvalheiro, F. ;
Duarte, L. C. ;
Marques, S. ;
Bogel-Lukasik, R. .
BIORESOURCE TECHNOLOGY, 2010, 101 (13) :4775-4800
[7]   Enzymatic hydrolysis of microalgal biomass for bioethanol production [J].
Harun, Razif ;
Danquah, Michael K. .
CHEMICAL ENGINEERING JOURNAL, 2011, 168 (03) :1079-1084
[8]   Exploring alkaline pre-treatment of microalgal biomass for bioethanol production [J].
Harun, Razif ;
Jason, W. S. Y. ;
Cherrington, Tamara ;
Danquah, Michael K. .
APPLIED ENERGY, 2011, 88 (10) :3464-3467
[9]   Bioethanol production, using carbohydrate-rich microalgae biomass as feedstock [J].
Ho, Shih-Hsin ;
Huang, Shu-Wen ;
Chen, Chun-Yen ;
Hasunuma, Tomohisa ;
Kondo, Akihiko ;
Chang, Jo-Shu .
BIORESOURCE TECHNOLOGY, 2013, 135 :191-198
[10]   Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N [J].
Ho, Shih-Hsin ;
Chen, Chun-Yen ;
Chang, Jo-Shu .
BIORESOURCE TECHNOLOGY, 2012, 113 :244-252