RECURRENCE AND LYAPUNOV EXPONENTS

被引:18
|
作者
Saussol, B. [1 ]
Troubetzkoy, S. [2 ,3 ]
Vaienti, S. [4 ,5 ]
机构
[1] Univ Picardie Jules Verne, LAMFA CNRS Umr 6140, F-80039 Amiens 1, France
[2] Federat Rech Unites Math Marseille, Inst Math Luminy, Ctr Phys Theor, F-13288 Marseille 9, France
[3] Univ Mediterranee, F-13288 Marseille 9, France
[4] Univ Toulon & Var, Ctr Phys Theor, F-13288 Marseille 9, France
[5] Federat Rech Unites Math Marseille, CNRS Luminy, F-13288 Marseille 9, France
关键词
Return time; Lyapunov exponents;
D O I
10.17323/1609-4514-2003-3-1-189-203
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove two inequalities between the Lyapunov exponents of a diffeomorphism and some characteristics of its local recurrence properties. We give examples of linear hyperbolic maps of the torus showing that each of the inequalities is optimal.
引用
收藏
页码:189 / 203
页数:15
相关论文
共 50 条
  • [21] On Khintchine exponents and Lyapunov exponents of continued fractions
    Fan, Ai-Hua
    Liao, Ling-Min
    Wang, Bao-Wei
    Wu, Jun
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 : 73 - 109
  • [22] Dimension, recurrence via entropy and Lyapunov exponents for C1 map with singularities
    Bao, Hongwei
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2018, 38 : 801 - 831
  • [23] Lyapunov exponents for expansive homeomorphisms
    Pacifico, M. J.
    Vieitez, J. L.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2020, 63 (02) : 413 - 425
  • [24] LYAPUNOV EXPONENTS AND CONTINUUM KINEMATICS
    BERGER, BS
    ROKNI, M
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1987, 25 (10) : 1251 - 1257
  • [25] LYAPUNOV EXPONENTS OF CONTROL FLOWS
    COLONIUS, F
    KLIEMANN, W
    LECTURE NOTES IN MATHEMATICS, 1991, 1486 : 331 - 365
  • [26] CODES FOR APPROXIMATING LYAPUNOV EXPONENTS
    Dieci, Luca
    Jolly, Michael S.
    Van Vleck, Erik S.
    PROCEEDINGS OF ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 4, PTS A-C, 2010, : 323 - 330
  • [27] Lyapunov Exponents of Hyperbolic Attractors
    Jiang, Da-Quan
    Qian, Min
    Qian, Min-Ping
    MATHEMATICAL THEORY OF NONEQUILIBRIUM STEADY STATES: ON THE FRONTIER OF PROBABILITY AND DYNAMICAL SYSTEMS, 2004, 1833 : 189 - 214
  • [28] LYAPUNOV EXPONENTS AND CONTINUUM KINEMATICS
    BERGER, BS
    ROKNI, M
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1987, 25 (08) : 1079 - 1084
  • [29] Lyapunov exponents of hyperbolic attractors
    Da-quan Jiang
    Pei-dong Liu
    Min Qian
    manuscripta mathematica, 2002, 108 : 43 - 67
  • [30] Universal scaling of Lyapunov exponents
    J Phys A Math Gen, 10 (3441):