RECURRENCE AND LYAPUNOV EXPONENTS

被引:18
|
作者
Saussol, B. [1 ]
Troubetzkoy, S. [2 ,3 ]
Vaienti, S. [4 ,5 ]
机构
[1] Univ Picardie Jules Verne, LAMFA CNRS Umr 6140, F-80039 Amiens 1, France
[2] Federat Rech Unites Math Marseille, Inst Math Luminy, Ctr Phys Theor, F-13288 Marseille 9, France
[3] Univ Mediterranee, F-13288 Marseille 9, France
[4] Univ Toulon & Var, Ctr Phys Theor, F-13288 Marseille 9, France
[5] Federat Rech Unites Math Marseille, CNRS Luminy, F-13288 Marseille 9, France
关键词
Return time; Lyapunov exponents;
D O I
10.17323/1609-4514-2003-3-1-189-203
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove two inequalities between the Lyapunov exponents of a diffeomorphism and some characteristics of its local recurrence properties. We give examples of linear hyperbolic maps of the torus showing that each of the inequalities is optimal.
引用
收藏
页码:189 / 203
页数:15
相关论文
共 50 条
  • [1] Recurrence, dimensions, and Lyapunov exponents
    Saussol, B
    Troubetzkoy, S
    Vaienti, S
    JOURNAL OF STATISTICAL PHYSICS, 2002, 106 (3-4) : 623 - 634
  • [2] Recurrence, Dimensions, and Lyapunov Exponents
    B. Saussol
    S. Troubetzkoy
    S. Vaienti
    Journal of Statistical Physics, 2002, 106 : 623 - 634
  • [3] Lyapunov exponents, dual Lyapunov exponents, and multifractal analysis
    Fan, AH
    Jiang, YP
    CHAOS, 1999, 9 (04) : 849 - 853
  • [4] Lyapunov Exponents
    Weiss, Christian
    TWISTED TEICHMULLER CURVES, 2014, 2104 : 127 - 133
  • [5] LYAPUNOV EXPONENTS - A SURVEY
    ARNOLD, L
    WIHSTUTZ, V
    LECTURE NOTES IN MATHEMATICS, 1986, 1186 : 1 - 26
  • [6] STABILITY OF LYAPUNOV EXPONENTS
    LEDRAPPIER, F
    YOUNG, LS
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1991, 11 : 469 - 484
  • [7] On quantum Lyapunov exponents
    Majewski, Wladyslaw A.
    Marciniak, Marcin
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (31): : L523 - L528
  • [8] Differentiability of Lyapunov Exponents
    Ferraiol, Thiago F.
    San Martin, Luiz A. B.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2020, 26 (02) : 289 - 310
  • [9] EXTENDED LYAPUNOV EXPONENTS
    WIESEL, WE
    PHYSICAL REVIEW A, 1992, 46 (12): : 7480 - 7491
  • [10] Parametric Lyapunov exponents
    De Thelin, Henry
    Gauthier, Thomas
    Vigny, Gabriel
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (03) : 660 - 672