Blister-Based Laser-Induced Forward Transfer of Luminescent Diamond Nanoparticles

被引:4
作者
Komlenok, Maxim S. [1 ]
Kudryavtsev, Oleg S. [1 ]
Pasternak, Dmitrii G. [1 ]
Vlasov, Igor I. [1 ]
Konov, Vitaly I. [1 ]
机构
[1] Russian Acad Sci, Prokhorov Gen Phys Inst, 38 Vavilova Str, Moscow 119991, Russia
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2021年 / 218卷 / 05期
基金
俄罗斯科学基金会;
关键词
diamond nanoparticles; laser-induced forward transfer; nitrogen-vacancy centers;
D O I
10.1002/pssa.202000269
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The possibility of laser printing of luminescent diamond nanoparticles via a blister-based laser-induced forward transfer technique is demonstrated. For this purpose, a donor substrate consisting of a transparent sapphire wafer and an absorbing thin titanium film (250 and 550 nm thick) coated with nanoparticles is exposed to the radiation of an ArF excimer laser (lambda = 193 nm,tau = 20 ns). Under the optimized thickness of titanium layer and laser fluence, the ejection of nanoparticles from the donor substrate is caused by the blistering of the metal film without its rupture. The luminescence mapping of the donor and acceptor substrates has proved the transfer of luminescent diamond nanoparticles with the same intensity of the signal. Features and prospects of the proposed technique are discussed.
引用
收藏
页数:4
相关论文
共 18 条
[1]   Nano-manipulation of diamond-based single photon sources [J].
Ampem-Lassen, E. ;
Simpson, D. A. ;
Gibson, B. C. ;
Trpkovski, S. ;
Hossain, F. M. ;
Huntington, S. T. ;
Ganesan, K. ;
Hollenberg, L. C. L. ;
Prawer, S. .
OPTICS EXPRESS, 2009, 17 (14) :11287-11293
[2]   Printing of single-wall carbon nanotubes via blister-based laser-induced forward transfer [J].
Arutyunyan, N. R. ;
Komlenok, M. S. ;
Kononenko, T. V. ;
Dezhkina, M. A. ;
Popovich, A. F. ;
Konov, V. I. .
LASER PHYSICS, 2019, 29 (02)
[3]   Time-resolved study of polyimide absorption layers for blister-actuated laser-induced forward transfer [J].
Brown, Matthew S. ;
Kattamis, Nicholas T. ;
Arnold, Craig B. .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (08)
[4]   [INVITED] Laser-induced forward transfer: A high resolution additive manufacturing technology [J].
Delaporte, Philippe ;
Alloncle, Anne-Patricia .
OPTICS AND LASER TECHNOLOGY, 2016, 78 :33-41
[5]  
Dezhkina M. A., 2020, J PHYS C SER, V1571, P012007
[6]   Manipulations with diamond nanoparticles in SPM: the effect of electric field of the conductive probe tip [J].
Frolov, V. D. ;
Shershulin, V. A. ;
Zavedeeev, E. V. ;
Pivovarov, P. A. ;
Komlenok, M. S. ;
Nemanich, R. J. ;
Konov, V. I. ;
Vlasov, I. I. .
BULLETIN OF THE LEBEDEV PHYSICS INSTITUTE, 2016, 43 (12) :356-360
[7]   Single defect centres in diamond: A review [J].
Jelezko, F. ;
Wrachtrup, J. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2006, 203 (13) :3207-3225
[8]   Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials [J].
Kattamis, Nicholas T. ;
Purnick, Priscilla E. ;
Weiss, Ron ;
Arnold, Craig B. .
APPLIED PHYSICS LETTERS, 2007, 91 (17)
[9]   Printing of Crumpled CVD Graphene via Blister-Based Laser-Induced Forward Transfer [J].
Komlenok, Maxim S. ;
Pivovarov, Pavel A. ;
Dezhkina, Margarita A. ;
Rybin, Maxim G. ;
Savin, Sergey S. ;
Obraztsova, Elena D. ;
Konov, Vitaly I. .
NANOMATERIALS, 2020, 10 (06)
[10]   Choice of a target with metal coating for laser-induced transfer of ultra dispersed materials [J].
Kononenko, T. V. ;
Kamalov, M. A. ;
Popovich, M. Yu ;
Konov, V. I. ;
Sentis, M. L. .
QUANTUM ELECTRONICS, 2010, 40 (11) :1034-1040