Structural Principles in Robo Activation and Auto-inhibition

被引:29
作者
Barak, Reut [1 ]
Yom-Tov, Galit [1 ]
Guez-Haddad, Julia [1 ]
Gasri-Plotnitsky, Lital [1 ]
Maimon, Roy [2 ]
Cohen-Berkman, Moran [1 ]
McCarthy, Andrew A. [3 ]
Perlson, Eran [2 ]
Henis-Korenblit, Sivan [1 ]
Isupov, Michail N. [4 ]
Opatowsky, Yarden [1 ]
机构
[1] Bar Ilan Univ, Mina & Everard Goodman Fac Life Sci, Ramat Gan, Israel
[2] Tel Aviv Univ, Sackler Fac Med, Dept Physiol & Pharmacol, Tel Aviv, Israel
[3] European Mol Biol Lab, Grenoble, France
[4] Univ Exeter, Biosci, Exeter, Devon, England
关键词
AXON GUIDANCE; MOLECULAR-REPLACEMENT; BIVALENT BINDING; HEPARAN-SULFATE; KIT RECEPTOR; SLIT; ROUNDABOUT; DIMERIZATION; SPECIFICITY; REFINEMENT;
D O I
10.1016/j.cell.2019.02.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Proper brain function requires high-precision neuronal expansion and wiring, processes controlled by the transmembrane Roundabout (Robo) receptor family and their Slit ligands. Despite their great importance, the molecular mechanism by which Robos' switch from "off" to "on" states remains unclear. Here, we report a 3.6 (A) over dot crystal structure of the intact human Robo2 ectodomain (domains D1-8). We demonstrate that Robo cis dimerization via D4 is conserved through hRobo1, 2, and 3 and the C. elegans homolog SAX-3 and is essential for SAX-3 function in vivo. The structure reveals two levels of auto-inhibition that prevent premature activation: (1) cis blocking of the D4 dimerization interface and (2) trans interactions between opposing Robo receptors that fasten the D4-blocked conformation. Complementary experiments in mouse primary neurons and C. elegans support the auto-inhibition model. These results suggest that Slit stimulation primarily drives the release of Robo auto-inhibition required for dimerization and activation.
引用
收藏
页码:272 / +
页数:30
相关论文
共 80 条
  • [1] Towards automated crystallographic structure refinement with phenix.refine
    Afonine, Pavel V.
    Grosse-Kunstleve, Ralf W.
    Echols, Nathaniel
    Headd, Jeffrey J.
    Moriarty, Nigel W.
    Mustyakimov, Marat
    Terwilliger, Thomas C.
    Urzhumtsev, Alexandre
    Zwart, Peter H.
    Adams, Paul D.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2012, 68 : 352 - 367
  • [2] Dscam1 Forms a Complex with Robo1 and the N-Terminal Fragment of Slit to Promote the Growth of Longitudinal Axons
    Alavi, Maryam
    Song, Minmin
    King, Gracie L. Andrews
    Gillis, Taylor
    Propst, Robert
    Lamanuzzi, Matthew
    Bousum, Adam
    Miller, Amanda
    Allen, Ryan
    Kidd, Thomas
    [J]. PLOS BIOLOGY, 2016, 14 (09):
  • [3] Robo1 Forms a Compact Dimer-of-Dimers Assembly
    Aleksandrova, Nataliia
    Gutsche, Irina
    Kandiah, Eaazhisai
    Avilov, Sergiy V.
    Petoukhov, Maxim V.
    Seiradake, Elena
    McCarthy, Andrew A.
    [J]. STRUCTURE, 2018, 26 (02) : 320 - +
  • [4] Understanding cytokine and growth factor receptor activation mechanisms
    Atanasova, Mariya
    Whitty, Adrian
    [J]. CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2012, 47 (06) : 502 - 530
  • [5] Ba-Charvet KTN, 2001, J NEUROSCI, V21, P4281
  • [6] A Roundabout Way to Cancer
    Ballard, Mimmi S.
    Hinck, Lindsay
    [J]. GUIDANCE MOLECULES IN CANCER AND TUMOR ANGIOGENESIS, 2012, 114 : 187 - 235
  • [7] Crystal structure of the extracellular juxtamembrane region of Robo1
    Barak, Reut
    Lahmi, Roxane
    Gevorkyan-Airapetov, Lada
    Levy, Eliad
    Tzur, Amit
    Opatowsky, Yarden
    [J]. JOURNAL OF STRUCTURAL BIOLOGY, 2014, 186 (02) : 283 - 291
  • [8] Expression, derivatization, crystallization and experimental phasing of an extracellular segment of the human Robo1 receptor
    Barak, Reut
    Opatowsky, Yarden
    [J]. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS, 2013, 69 : 771 - 775
  • [9] Slit-Robo signaling
    Blockus, Heike
    Chedotal, Alain
    [J]. DEVELOPMENT, 2016, 143 (17): : 3037 - 3044
  • [10] BRENNER S, 1974, GENETICS, V77, P71