Demethylase-independent function of JMJD2D as a novel antagonist of p53 to promote Liver Cancer initiation and progression

被引:29
作者
Li, Ming [1 ]
Deng, Yuan [2 ]
Zhuo, Minghui [2 ]
Zhou, Hui [2 ]
Kong, Xu [1 ]
Xia, Xiaogang [1 ]
Su, Zhaojie [1 ]
Chen, Qiang [2 ]
Guo, Peng [2 ]
Mo, Pingli [2 ]
Yu, Chundong [2 ]
Li, Wengang [1 ]
机构
[1] Xiamen Univ, Xiangan Hosp, Sch Med, Dept Hepatobiliary Surg, Xiamen, Fujian, Peoples R China
[2] Xiamen Univ, Innovat Ctr Cell Biol, Sch Life Sci, State Key Lab Cellular Stress Biol, Xiamen 361102, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
liver cancer; JMJD2D; p53; p21; PUMA; HEPATOCELLULAR-CARCINOMA; HISTONE DEMETHYLASE; EXPRESSION; GROWTH;
D O I
10.7150/thno.45581
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Background: As a histone demethylase, JMJD2D can enhance gene expression by specifically demethylating H3K9me2/3 and plays an important role in promoting colorectal cancer progression. However, its role in liver cancer remains unclear. Methods: The expression of JMJD2D was examined in human liver cancer specimens and non-tumorous liver tissues by immunohistochemical or immunoblot analysis. JMJD2D expression was knocked down in liver cancer cells using small hairpin RNAs, and cells were analyzed with Western blot, real-time PCR, cell viability, colony formation, and flow cytometry assays. Cells were also grown as tumor xenografts in nude mice, and the tumor cell proliferation and apoptosis were measured by immunohistochemical analysis. The relationship between JMJD2D and p53 was studied by co-immunoprecipitation, chromatin immunoprecipitation, and electric mobility shift assay. Wild-type and JMJD2D-knockout mice were intraperitoneally injected with diethylnitrosamine (DEN) to induce liver tumors and the liver cancer initiation and progression were investigated. Results: JMJD2D was frequently upregulated in human liver cancer specimens compared with non-tumorous liver tissues. The overall survival of liver cancer patients with high JMJD2D expression was significantly decreased compared to that with low JMJD2D expression. JMJD2D knockdown reduced liver cancer cell proliferation and xenograft tumor growth, sensitized cells to chemotherapeutic drug-induced apoptosis, and increased the expression of cell cycle inhibitor p21 and pro-apoptosis gene PUMA. Genetically, JMJD2D deficiency protected mice against DEN-induced liver cancer initiation and progression. Knockout of tumor suppressor p53 significantly reduced the effects of JMJD2D knockdown on cell proliferation, apoptosis, and the expression of p21 and PUMA, suggesting that JMJD2D regulates liver cancer cell functions in part through inhibiting p53 signaling pathway. Mechanistically, JMJD2D directly interacted with p53 and inhibited p53 recruitment to the p21 and PUMA promoters in a demethylation activity-independent manner, implicating a demethylase-independent function of JMJD2D as a novel p53 antagonist. In addition, JMJD2D could activate Wnt/beta-catenin signaling to promote liver cancer cell proliferation. Conclusion: Our study demonstrates that JMJD2D can antagonize the tumor suppressor p53 and activate an oncogenic signaling pathway (such as Wnt/beta-catenin signaling pathway) simultaneously to promote liver cancer initiation and progression, suggesting that JMJD2D may serve as a novel target for liver cancer treatment.
引用
收藏
页码:8863 / 8879
页数:17
相关论文
共 33 条
[1]  
[Anonymous], 2010, Cold Spring Harb. Perspect. Biol
[2]   Aminobenzothiazole derivatives stabilize the thermolabile p53 cancer mutant Y220C and show anticancer activity in p53-Y220C cell lines [J].
Baud, Matthias G. J. ;
Bauer, Matthias R. ;
Verduci, Lorena ;
Dingier, Felix A. ;
Patel, Ketan J. ;
Roy, Deeptee Horil ;
Joerger, Andreas C. ;
Fersht, Alan R. .
EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2018, 152 :101-114
[3]   KDM4/JMJD2 Histone Demethylases: Epigenetic Regulators in Cancer Cells [J].
Berry, William L. ;
Janknecht, Ralf .
CANCER RESEARCH, 2013, 73 (10) :2936-2942
[4]   Molecular and histological correlations in liver cancer [J].
Calderaro, Julien ;
Ziol, Marianne ;
Paradis, Valerie ;
Zucman-Rossi, Jessica .
JOURNAL OF HEPATOLOGY, 2019, 71 (03) :616-630
[5]   The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression [J].
Chen, Jiandong .
COLD SPRING HARBOR PERSPECTIVES IN MEDICINE, 2016, 6 (03)
[6]   Liver Cancer Initiation Requires p53 Inhibition by CD44-Enhanced Growth Factor Signaling [J].
Dhar, Debanjan ;
Antonucci, Laura ;
Nakagawa, Hayato ;
Kim, Ju Youn ;
Glitzner, Elisabeth ;
Caruso, Stefano ;
Shalapour, Shabnam ;
Yang, Ling ;
Valasek, Mark A. ;
Lee, Sooyeon ;
Minnich, Kerstin ;
Seki, Ekihiro ;
Tuckermann, Jan ;
Sibilia, Maria ;
Zucman-Rossi, Jessica ;
Karin, Michael .
CANCER CELL, 2018, 33 (06) :1061-+
[7]   Epidemiology of Hepatocellular Carcinoma in the United States: Where Are We? Where Do We Go? [J].
El-Serag, Hashem B. ;
Kanwal, Fasiha .
HEPATOLOGY, 2014, 60 (05) :1767-1775
[8]   Protective Effect of the Y220C Mutant p53 Against Steatosis: Good News? [J].
Gori, Manuele ;
Barbaro, Barbara ;
Arciello, Mario ;
Maggio, Roberta ;
Viscomi, Carmela ;
Longo, Alessia ;
Balsano, Clara .
JOURNAL OF CELLULAR PHYSIOLOGY, 2014, 229 (09) :1182-1192
[9]   KDM5A Regulates a Translational Program that Controls p53 Protein Expression [J].
Hu, Dongli ;
Jablonowski, Carolyn ;
Cheng, Pei-Hsin ;
AlTahan, Alaa ;
Li, Chunliang ;
Wang, Yingdi ;
Palmer, Lance ;
Lan, Cuixia ;
Sun, Bingmei ;
Abu-Zaid, Ahmed ;
Fan, Yiping ;
Brimble, Mark ;
Gamboa, Nicolas T. ;
Kumbhar, Ramhari C. ;
Yanishevski, David ;
Miller, Kyle M. ;
Kang, Guolian ;
Zambetti, Gerard P. ;
Chen, Taosheng ;
Yan, Qin ;
Davidoff, Andrew M. ;
Yang, Jun .
ISCIENCE, 2018, 9 :84-+
[10]  
Hu FQ, 2018, MOL CANC, V17