Tailored optical potentials or Cs atoms above waveguides with focusing dielectric nano-antenna

被引:6
作者
Ang, Angeleene S. [1 ,2 ]
Shalin, Alexander S. [3 ]
Karabchevsky, Alina [1 ,2 ]
机构
[1] Ben Gurion Univ Negev, Sch Elect & Comp Engn, Beer Sheva, Israel
[2] Ben Gurion Univ Negev, Ctr Quantum Sci & Technol BGU QST, Beer Sheva, Israel
[3] ITMO Univ, 49 Kronversky Ave, St Petersburg, Russia
关键词
Quantum computers - Particle beams - Atoms - Waveguides - Evanescent fields;
D O I
10.1364/OL.394557
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Tuning the near field using all-dielectric nano-antennas offers a promising approach for trapping atoms, which could enable strong single-atom-photon coupling. Here we report the numerical study of an optical trapping of a single Cs atom above a waveguide with a silicon nano-antenna, which produces a trapping potential for atoms in a chipscale configuration. Using counter-propagating incident fields, bichromatically detuned from the atomic cesium D-lines, we numerically investigate the dependence of the optical potential on the nano-antenna geometry. We tailor the near-field potential landscape by tuning the evanescent field of the waveguide using a toroidal nano-antenna, a configuration that enables trapping of ultracold Cs atoms. Our research opens up a plethora of trapping atoms applications in a chip-scale manner, from quantum computing to quantum sensing, among others. (C) 2020 Optical Society of America
引用
收藏
页码:3512 / 3515
页数:4
相关论文
共 35 条
[1]   TRAPPING OF ATOMS BY RESONANCE RADIATION PRESSURE [J].
ASHKIN, A .
PHYSICAL REVIEW LETTERS, 1978, 40 (12) :729-732
[2]   APPLIED PHYSICS The Case for Plasmonics [J].
Brongersma, Mark L. ;
Shalaev, Vladimir M. .
SCIENCE, 2010, 328 (5977) :440-441
[3]   Blue-detuned optical atom trapping in a compact plasmonic structure [J].
Chen, Zhao ;
Zhang, Fan ;
Zhang, Qi ;
Ren, Juanjuan ;
Hao, He ;
Duan, Xueke ;
Zhang, Pengfei ;
Zhang, Tiancai ;
Gu, Ying ;
Gong, Qihuang .
PHOTONICS RESEARCH, 2017, 5 (05) :436-440
[4]   Large Bragg Reflection from One-Dimensional Chains of Trapped Atoms Near a Nanoscale Waveguide [J].
Corzo, Neil V. ;
Gouraud, Baptiste ;
Chandra, Aveek ;
Goban, Akihisa ;
Sheremet, Alexandra S. ;
Kupriyanov, Dmitriy V. ;
Laurat, Julien .
PHYSICAL REVIEW LETTERS, 2016, 117 (13)
[5]   Invisibility Cloaking Scheme by Evanescent Fields Distortion on Composite Plasmonic Waveguides with Si Nano-Spacer [J].
Galutin, Yakov ;
Falek, Eran ;
Karabchevsky, Alina .
SCIENTIFIC REPORTS, 2017, 7
[6]   Dynamics of noise-induced heating in atom traps [J].
Gehm, ME ;
O'Hara, KM ;
Savard, TA ;
Thomas, JE .
PHYSICAL REVIEW A, 1998, 58 (05) :3914-3921
[7]   Demonstration of a State-Insensitive, Compensated Nanofiber Trap [J].
Goban, A. ;
Choi, K. S. ;
Alton, D. J. ;
Ding, D. ;
Lacroute, C. ;
Pototschnig, M. ;
Thiele, T. ;
Stern, N. P. ;
Kimble, H. J. .
PHYSICAL REVIEW LETTERS, 2012, 109 (03)
[8]   Optical dipole traps for neutral atoms [J].
Grimm, R ;
Weidemüller, M ;
Ovchinnikov, YB .
ADVANCES IN ATOMIC MOLECULAR, AND OPTICAL PHYSICS, VOL. 42, 2000, 42 :95-170
[9]   Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides [J].
Ikeda, Kazuhiro ;
Saperstein, Robert E. ;
Alic, Nikola ;
Fainman, Yeshaiahu .
OPTICS EXPRESS, 2008, 16 (17) :12987-12994
[10]   Fast surface plasmon resonance imaging sensor using Radon transform [J].
Karabchevsky, A. ;
Karabchevsky, S. ;
Abdulhalim, I. .
SENSORS AND ACTUATORS B-CHEMICAL, 2011, 155 (01) :361-365