Chaos expansion for the solutions of stochastic differential equations

被引:3
作者
Banek, T [1 ]
机构
[1] Tech Univ Lublin, Fac Management, Dept Operat Res, PL-20618 Lublin, Poland
关键词
homogeneous chaos; stochastic differential equations; black box;
D O I
10.1016/S0167-6911(98)00108-X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this note we generalize the Isobe-Sato formula for kernels of the Wiener-Ito chaos expansion to nonautonomous systems. Expansion of a transition density is obtained and some version of Wiener's famous "black-box" identification problem is solved. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:351 / 358
页数:8
相关论文
共 24 条
  • [1] [Anonymous], P INT S STOCH DIFF E
  • [2] [Anonymous], J MATH SOC JPN
  • [3] BERNARD P, 1990, ANN I H POINCARE-PR, V26, P287
  • [4] The market model of interest rate dynamics
    Brace, A
    Gatarek, D
    Musiela, M
    [J]. MATHEMATICAL FINANCE, 1997, 7 (02) : 127 - 155
  • [5] THE EXISTENCE OF SMOOTH DENSITIES FOR THE PREDICTION FILTERING AND SMOOTHING PROBLEMS
    ELLIOTT, RJ
    KOHLMANN, M
    [J]. ACTA APPLICANDAE MATHEMATICAE, 1989, 14 (03) : 269 - 286
  • [6] ELLIOTT RJ, 1989, ANN PROBAB, P194
  • [7] Friedman A., 1964, Partial Differential Equations of Parabolic Type
  • [8] Ikeda I., 1981, STOCHASTIC DIFFERENT
  • [9] WIENER-HERMITE EXPANSION OF A PROCESS GENERATED BY AN ITO STOCHASTIC DIFFERENTIAL-EQUATION
    ISOBE, E
    SATO, S
    [J]. JOURNAL OF APPLIED PROBABILITY, 1983, 20 (04) : 754 - 765
  • [10] Karatzas I., 2012, BROWNIAN MOTION STOC, VVol. 113