Elliptic multiple zeta values and one-loop superstring amplitudes

被引:118
作者
Broedel, Johannes [1 ]
Mafra, Carlos R. [2 ]
Matthes, Nils [3 ]
Schlotterer, Oliver [4 ]
机构
[1] ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland
[2] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[3] Univ Hamburg, Fachbereich Math, D-20146 Hamburg, Germany
[4] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Potsdam, Germany
基金
欧洲研究理事会;
关键词
Scattering Amplitudes; Superstrings and Heterotic Strings; Conformal Field Models in String Theory; BORN-INFELD ACTION; MODULI SPACES; CANCELLATIONS; INTEGRALS; PERIODS; MODEL;
D O I
10.1007/JHEP07(2015)112
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We investigate iterated integrals on an elliptic curve, which are a natural genus-one generalization of multiple polylogarithms. These iterated integrals coincide with the multiple elliptic polylogarithms introduced by Brown and Levin when constrained to the real line. At unit argument they reduce to an elliptic analogue of multiple zeta values, whose network of relations we start to explore. A simple and natural application of this framework are one-loop scattering amplitudes in open superstring theory. In particular, elliptic multiple zeta values are a suitable language to express their low energy limit. Similar to the techniques available at tree-level, our formalism allows to completely automatize the calculation.
引用
收藏
页数:43
相关论文
共 86 条
[1]  
Ablinger J., ARXIV13047071
[2]   Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms [J].
Ablinger, Jakob ;
Bluemlein, Johannes ;
Schneider, Carsten .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (08)
[3]   The two-loop sunrise graph in two space-time dimensions with arbitrary masses in terms of elliptic dilogarithms [J].
Adams, Luise ;
Bogner, Christian ;
Weinzierl, Stefan .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (10)
[4]   The two-loop sunrise graph with arbitrary masses [J].
Adams, Luise ;
Bogner, Christian ;
Weinzierl, Stefan .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (05)
[5]  
Beilinson A., 1994, PROC S PURE MATH, V55, P123, DOI DOI 10.1090/PSPUM/055.2
[6]  
Berkovits N, 2000, J HIGH ENERGY PHYS
[7]   New relations for gauge-theory amplitudes [J].
Bern, Z. ;
Carrasco, J. J. M. ;
Johansson, H. .
PHYSICAL REVIEW D, 2008, 78 (08)
[8]  
Bloch S., ARXIV14062664
[9]  
Bloch S.J., 2000, HIGHER REGULATORS AL, P1
[10]   The elliptic dilogarithm for the sunset graph [J].
Bloch, Spencer ;
Vanhove, Pierre .
JOURNAL OF NUMBER THEORY, 2015, 148 :328-364