Online diagnosis using influence diagrams

被引:0
作者
Sánchez, BM [1 ]
Ibargüengoytia, PH [1 ]
机构
[1] Inst Invest Elect, Cuernavaca 62490, Morelos, Mexico
来源
MICAI 2004: ADVANCES IN ARTIFICIAL INTELLIGENCE | 2004年 / 2972卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents the utilization of influence diagrams in the diagnosis of industrial processes. The diagnosis in this context signifies the early detection of abnormal behavior, and the selection of the best recommendation for the operator in order to correct the problem or minimize the effects. A software architecture is presented, based on the Elvira package, including the connection with industrial control systems. A simple experiment is presented together with the acquisition and representation of the knowledge.
引用
收藏
页码:546 / 554
页数:9
相关论文
共 7 条
[1]  
Chiang L.H., 2001, ADV TK CONT SIGN PRO, P71
[2]  
COOPER GF, 1992, MACH LEARN, V9, P309, DOI 10.1007/BF00994110
[3]  
Elvira Consortium, 2002, P 1 EUROPEAN WORKSHO, P1
[4]  
González-Noriega LD, 2002, LECT NOTES ARTIF INT, V2527, P795
[5]   Real time intelligent sensor validation [J].
Ibargüengoytia, PH ;
Sucar, LE ;
Vadera, S .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2001, 16 (04) :770-775
[6]  
Neapolitan R., 1990, PROBABILISTIC REASON
[7]   A review of process fault detection and diagnosis Part I: Quantitative model-based methods [J].
Venkatsubramanian, V ;
Rengaswamy, R ;
Yin, K ;
Kavuri, SN .
COMPUTERS & CHEMICAL ENGINEERING, 2003, 27 (03) :293-311