A general approach for producing nanoporous carbon, especially as evidenced for the case of adipic acid and zinc

被引:21
作者
Chen, Xiang Ying [1 ]
Chen, Chong [1 ]
Zhang, Zhong Jie [2 ]
Xie, Dong Hua [1 ]
机构
[1] Hefei Univ Technol, Anhui Key Lab Controllable Chem React & Mat Chem, Sch Chem Engn, Hefei 230009, Anhui, Peoples R China
[2] Anhui Univ, Anhui Prov Key Lab Environm Friendly Polymer Mat, Coll Chem & Chem Engn, Hefei 230039, Anhui, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
GRAPHENE NANOSHEETS; ENERGY-STORAGE; PERFORMANCE; SUPERCAPACITORS;
D O I
10.1039/c3ta13506c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, we demonstrate a novel and general synthetic approach for producing nanoporous carbon materials, using adipic acid and zinc powder as raw materials. The mass ratio and carbonization temperature have crucial effects on the structure and electrochemical behavior of the carbon samples. The optimum sample is carbon-1:2-700; it is amorphous in nature and has a high BET surface area of 1426 m(2) g(-1) and a very large pore volume of 5.92 cm(3) g(-1). What's more, the sample takes on sheet-like structures entirely composed of nanopores. The electrochemical performance is measured in a three-electrode system using 6 mol L-1 KOH as the electrolyte, and a two-electrode system using [EMIm]BF4/AN as the electrolyte, respectively. In the three-electrode system, it delivers a high specific capacitance of 373.3 F g(-1) at a current density of 2 A g(-1). Furthermore, it displays a good cycling durability of 93.9% after 10 000 cycles. In the two-electrode system, the voltage window has been largely broadened and a series of temperature-dependent measurements are adopted. More importantly, the present synthetic method can be extended to other chemical substances as carbon precursors to produce porous carbon, which can greatly enrich the field of porous carbon synthesis as well as their application as supercapacitors.
引用
收藏
页码:14919 / 14926
页数:8
相关论文
共 38 条
[1]   Nanostructured carbon for energy storage and conversion [J].
Candelaria, Stephanie L. ;
Shao, Yuyan ;
Zhou, Wei ;
Li, Xiaolin ;
Xiao, Jie ;
Zhang, Ji-Guang ;
Wang, Yong ;
Liu, Jun ;
Li, Jinghong ;
Cao, Guozhong .
NANO ENERGY, 2012, 1 (02) :195-220
[2]   A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications [J].
Chaikittisilp, Watcharop ;
Ariga, Katsuhiko ;
Yamauchi, Yusuke .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (01) :14-19
[3]   Graphene and nanostructured MnO2 composite electrodes for supercapacitors [J].
Cheng, Qian ;
Tang, Jie ;
Ma, Jun ;
Zhang, Han ;
Shinya, Norio ;
Qin, Lu-Chang .
CARBON, 2011, 49 (09) :2917-2925
[4]   Titanium carbide derived nanoporous carbon for energy-related applications [J].
Dash, Ranjan ;
Chmiola, John ;
Yushin, Gleb ;
Gogotsi, Yury ;
Laudisio, Giovanna ;
Singer, Jonathan ;
Fischer, John ;
Kucheyev, Sergei .
CARBON, 2006, 44 (12) :2489-2497
[5]   Large-pore ordered mesoporous materials templated from non-Pluronic amphiphilic block copolymers [J].
Deng, Yonghui ;
Wei, Jing ;
Sun, Zhenkun ;
Zhao, Dongyuan .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (09) :4054-4070
[6]   Two-Dimensional Mesoporous Carbon Nanosheets and Their Derived Graphene Nanosheets: Synthesis and Efficient Lithium Ion Storage [J].
Fang, Yin ;
Lv, Yingying ;
Che, Renchao ;
Wu, Haoyu ;
Zhang, Xuehua ;
Gu, Dong ;
Zheng, Gengfeng ;
Zhao, Dongyuan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1524-1530
[7]   Interpretation of Raman spectra of disordered and amorphous carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2000, 61 (20) :14095-14107
[8]   Carbon materials for the electrochemical storage of energy in capacitors [J].
Frackowiak, E ;
Béguin, F .
CARBON, 2001, 39 (06) :937-950
[9]   Carbon materials for supercapacitor application [J].
Frackowiak, Elzbieta .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (15) :1774-1785
[10]   Preparation and characterization of high surface area, high porosity carbon monoliths from pyrolyzed bovine bone and their performance as supercapacitor electrodes [J].
Goodman, Paul A. ;
Li, H. ;
Gao, Y. ;
Lu, Y. F. ;
Stenger-Smith, J. D. ;
Redepenning, Jody .
CARBON, 2013, 55 :291-298