Effect of reverted austenite on tensile and impact strength in a martensitic stainless steel-An in-situ X-ray diffraction study

被引:43
作者
Wiessner, Manfred [1 ]
Gamsjaeger, Ernst [2 ]
van der Zwaag, Sybrand [3 ]
Angerer, Paul [4 ]
机构
[1] Anton Paar GmbH, Anton Paar Str 20, Graz, Austria
[2] Univ Leoben, Inst Mech, Franz Josef Str 18, Leoben, Austria
[3] Delft Univ Technol, Fac Aerosp Engn, Delft, Netherlands
[4] Mat Ctr Leoben GmbH, Roseggerstr 12, Leoben, Austria
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2017年 / 682卷
关键词
In-situ high temperature X-ray diffraction; Martensitic stainless steel; Dislocation density; Reverted austenite; Tensile strength; Impact strength; MECHANICAL-PROPERTIES; RETAINED AUSTENITE; MULTIPHASE STEELS; GRAIN-BOUNDARIES; TRIP STEEL; TRANSFORMATION; STABILITY; MICROSTRUCTURE; PARAMETERS; MORPHOLOGY;
D O I
10.1016/j.msea.2016.11.039
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The transformation kinetics from martensite to reverted austenite and partially back to martensite during tempering of a martensitic stainless steel is investigated by in-situ high temperature X-ray diffraction (HTXRD). Phase fractions and microstructural parameters such as the dislocation density are deduced by means of the Rietveld method in combination with the double-Voigt peak broadening model. The dislocation densities of the phases investigated are related to the square of the microstrain by a pre-factor that depends on Poisson's ratio and lattice constant only. For low tempering temperatures the dislocation density in martensite remains high and the mass fraction of austenite at room temperature remains low. The highest value of the mass fraction of austenite stable at room temperature occurs at intermediate tempering temperatures and this condition corresponds to a maximum in impact strength and a minimum in tensile strength. At higher temperatures austenite formed during tempering partially retransforms to martensite during cooling. The average dislocation density in martensite increases with increasing fraction of newly transformed martensite resulting in lower values of impact strength. The in-situ XRD experiments can be used to analyze structural changes in detail and offer thereby a powerful tool to design appropriate heat treatments for engineering steels to obtain tailored mechanical properties.
引用
收藏
页码:117 / 125
页数:9
相关论文
共 44 条
[1]   THERMO-CALC & DICTRA, computational tools for materials science [J].
Andersson, JO ;
Helander, T ;
Höglund, LH ;
Shi, PF ;
Sundman, B .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2002, 26 (02) :273-312
[2]  
[Anonymous], TOPAS 4 2 US MAN
[3]  
[Anonymous], 2016, N404 STAINLESS STEEL
[4]   EFFECT OF HEATING RATE ON MARTENSITE TO AUSTENITE TRANSFORMATION IN FE-NI-C ALLOYS [J].
APPLE, CA ;
KRAUSS, G .
ACTA METALLURGICA, 1972, 20 (07) :849-&
[5]   THE DISLOCATION DISTRIBUTION, FLOW STRESS, AND STORED ENERGY IN COLD-WORKED POLYCRYSTALLINE SILVER [J].
BAILEY, JE ;
HIRSCH, PB .
PHILOSOPHICAL MAGAZINE, 1960, 5 (53) :485-&
[6]  
Balzar D, 1995, ADV XRAY ANAL, V38, P397
[7]   Mechanical stability of individual austenite grains in TRIP steel studied by synchrotron X-ray diffraction during tensile loading [J].
Blonde, R. ;
Jimenez-Melero, E. ;
Zhao, L. ;
Wright, J. P. ;
Bruck, E. ;
van der Zwaag, S. ;
van Dijk, N. H. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 618 :280-287
[8]   The mechanical stability of retained austenite in low-alloyed TRIP steel under shear loading [J].
Blonde, R. ;
Jimenez-Melero, E. ;
Zhao, L. ;
Schell, N. ;
Brueck, E. ;
van der Zwaag, S. ;
van Dijk, N. H. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 594 :125-134
[9]   High-energy X-ray diffraction study on the temperature-dependent mechanical stability of retained austenite in low-alloyed TRIP steels [J].
Blonde, R. ;
Jimenez-Melero, E. ;
Zhao, L. ;
Wright, J. P. ;
Bruck, E. ;
van der Zwaag, S. ;
van Dijk, N. H. .
ACTA MATERIALIA, 2012, 60 (02) :565-577
[10]   BAIN STRAIN, LATTICE CORRESPONDENCES, AND DEFORMATIONS RELATED TO MARTENSITIC TRANSFORMATIONS [J].
BOWLES, JS ;
WAYMAN, CM .
METALLURGICAL TRANSACTIONS, 1972, 3 (05) :1113-&