Decay of solutions of the Teukolsky equation for higher spin in the Schwarzschild geometry

被引:0
作者
Finster, Felix [1 ]
Smoller, Joel [2 ]
机构
[1] Univ Regensburg, NWF I Math, D-93040 Regensburg, Germany
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
ROTATING BLACK-HOLE; DIRAC PARTICLES; WAVE-EQUATION; PERTURBATIONS; STABILITY; COLLAPSE; FIELDS; SCALAR;
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We prove that the Schwarzschild black hole is linearly stable under electromagnetic and gravitational perturbations. Our method is to show that for spin s = 1 or s = 2, solutions of the Teukolsky equation with smooth, compactly supported initial data outside the event horizon, decay in L-loc(infinity).
引用
收藏
页码:71 / 110
页数:40
相关论文
共 28 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS F
[2]   Superradiance and scattering of the charged Klein-Gordon field by a step-like electrostatic potential [J].
Bachelot, A .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (10) :1179-1239
[3]   RADIATION FIELDS IN SCHWARZSCHILD BACKGROUND [J].
BARDEEN, JM ;
PRESS, WH .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (01) :7-19
[4]   The wave equation on the Schwarzschild metric II. Local decay for the spin-2 Regge-Wheeler equation [J].
Blue, P ;
Soffer, A .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (01)
[5]  
BLUE P, GRQC0310066
[6]  
BLUE P, GRQC0608073
[7]  
Chandrasekhar S., 1998, The Mathematical Theory of Black Holes
[8]   ELECTROMAGNETIC-FIELDS IN CURVED SPACES - CONSTRUCTIVE PROCEDURE [J].
COHEN, JM ;
KEGELES, LS .
PHYSICAL REVIEW D, 1974, 10 (04) :1070-1084
[9]   A proof of Price's law for the collapse of a self-gravitating scalar field [J].
Dafermos, M ;
Rodnianski, I .
INVENTIONES MATHEMATICAE, 2005, 162 (02) :381-457
[10]  
de Alfaro V., 1965, Potential Scattering