Superconvergence of Any Order Finite Volume Schemes for 1D General Elliptic Equations

被引:37
作者
Cao, Waixiang [1 ]
Zhang, Zhimin [2 ]
Zou, Qingsong [1 ,3 ]
机构
[1] Sun Yat Sen Univ, Coll Math & Sci Comp, Guangzhou 510275, Guangdong, Peoples R China
[2] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[3] Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
High order; Finite volume schemes; Superconvergence; ELEMENT METHOD; ACCURACY;
D O I
10.1007/s10915-013-9691-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present and analyze a finite volume scheme of arbitrary order for elliptic equations in the one-dimensional setting. In this scheme, the control volumes are constructed by using the Gauss points in subintervals of the underlying mesh. We provide a unified proof for the inf-sup condition, and show that our finite volume scheme has optimal convergence rate under the energy and norms of the approximate error. Furthermore, we prove that the derivative error is superconvergent at all Gauss points and in some special cases, the convergence rate can reach and even , comparing with rate of the counterpart finite element method. Here is the polynomial degree of the trial space. All theoretical results are justified by numerical tests.
引用
收藏
页码:566 / 590
页数:25
相关论文
共 33 条
[11]   A NEW CLASS OF HIGH ORDER FINITE VOLUME METHODS FOR SECOND ORDER ELLIPTIC EQUATIONS [J].
Chen, Long .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 47 (06) :4021-4043
[12]   Higher-order finite volume methods for elliptic boundary value problems [J].
Chen, Zhongying ;
Wu, Junfeng ;
Xu, Yuesheng .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2012, 37 (02) :191-253
[13]   LP error estimates and superconvergence for covolume or finite volume element methods [J].
Chou, SH ;
Kwak, DY ;
Li, O .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2003, 19 (04) :463-486
[14]   Superconvergence of finite volume methods for the second order elliptic problem [J].
Chou, So-Hsiang ;
Ye, Xiu .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (37-40) :3706-3712
[15]  
Emonot P., 1992, Methodes de volumes elements finis: Applications aux equations de Navier Stokes et resultats de convergence
[16]   On the accuracy of the finite volume element method based on piecewise linear polynomials [J].
Ewing, RE ;
Lin, T ;
Lin, YP .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (06) :1865-1888
[17]  
Eymard R, 2000, HDBK NUM AN, V7, P713
[18]  
Li R., 2000, GEN DIFFERENCE METHO
[19]   The finite volume element method with quadratic basis functions [J].
Liebau, F .
COMPUTING, 1996, 57 (04) :281-299
[20]   A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation [J].
Ollivier-Gooch, C ;
Van Altena, M .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 181 (02) :729-752