Lower bounds for Bayes error estimation

被引:35
作者
Antos, A
Devroye, L
Györfi, L
机构
[1] Hungarian Acad Sci, Comp & Automat Res Inst, H-1518 Budapest, Hungary
[2] McGill Univ, Sch Comp Sci, Montreal, PQ H3A 2K6, Canada
[3] Tech Univ Budapest, Dept Comp Sci & Informat Theory, H-1521 Budapest, Hungary
基金
加拿大自然科学与工程研究理事会;
关键词
discrimination; statistical pattern recognition; nonparametric estimation; Bayes error; lower bounds; rates of convergence;
D O I
10.1109/34.777375
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We give a short proof of the following result. Let (X,Y) be any distribution on N x {0, 1}, and let (X-1,Y-1),...,(X-n,Y-n) be an i.i.d. sample drawn from this distribution. In discrimination. the Bayes error L* = inf(g)P{g(X) not equal Y} is crucial importance. Here we show that without further conditions on the distribution of (X,Y), no rate-of-convergence results can be obtained. Let phi(n)(X-1,Y-1,...,X-n,Y-n) be an estimate of the Bayes error, and let {phi(n)(.)} be a sequence of such estimates. For any sequence {a(n)} of positive numbers converging to zero, a distribution of (X,Y) may be found such that E{\L* - phi(n)(X-1,Y-1,...,X-n, Y-n)\} greater than or equal to a(n) infinitely often.
引用
收藏
页码:643 / 645
页数:3
相关论文
共 11 条
[1]   ON ESTIMATING A DENSITY USING HELLINGER DISTANCE AND SOME OTHER STRANGE FACTS [J].
BIRGE, L .
PROBABILITY THEORY AND RELATED FIELDS, 1986, 71 (02) :271-291
[2]  
CHEN Z, 1973, P IEEE C SYST MAN CY
[3]  
COVER T. M., 1968, Proc. Int. Conf. on System Science, P413
[4]   ON ARBITRARILY SLOW RATES OF GLOBAL CONVERGENCE IN DENSITY-ESTIMATION [J].
DEVROYE, L .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 62 (04) :475-483
[5]   ANOTHER PROOF OF A SLOW CONVERGENCE RESULT OF BIRGE [J].
DEVROYE, L .
STATISTICS & PROBABILITY LETTERS, 1995, 23 (01) :63-67
[7]  
Devroye L., 1996, A probabilistic theory of pattern recognition
[8]   ESTIMATION OF CLASSIFICATION ERROR [J].
FUKUNAGA, K ;
KESSELL, DL .
IEEE TRANSACTIONS ON COMPUTERS, 1971, C 20 (12) :1521-&
[9]   BIAS OF NEAREST NEIGHBOR ERROR-ESTIMATES [J].
FUKUNAGA, K ;
HUMMELS, DM .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1987, 9 (01) :103-112
[10]   NONPARAMETRIC ESTIMATION OF BAYES ERROR OF FEATURE EXTRACTORS USING ORDERED NEAREST NEIGHBOR SETS [J].
GARNETT, JM ;
YAU, SS .
IEEE TRANSACTIONS ON COMPUTERS, 1977, 26 (01) :46-54