Differentially imprinted innate immunity by mucosal boost vaccination determines antituberculosis immune protective outcomes, independent of T-cell immunity

被引:38
作者
Jeyanathan, M. [1 ,2 ]
Damjanovic, D. [1 ,2 ]
Shaler, C. R. [1 ,2 ]
Lai, R. [1 ,2 ]
Wortzman, M. [1 ,2 ]
Yin, C. [1 ,2 ]
Zganiacz, A. [1 ,2 ]
Lichty, B. D. [1 ,2 ]
Xing, Z. [1 ,2 ]
机构
[1] McMaster Univ, McMaster Immunol Res Ctr, Hamilton, ON, Canada
[2] McMaster Univ, MG DeGroote Inst Infect Dis Res, Hamilton, ON, Canada
关键词
PULMONARY TUBERCULOSIS; MACROPHAGE ACTIVATION; INTERFERON-ALPHA/BETA; ADENOVIRUS VECTORS; TNF-ALPHA; IMMUNIZATION; VIRUS; STRATEGIES; INDUCTION; INFECTION;
D O I
10.1038/mi.2012.103
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Homologous and heterologous parenteral prime-mucosal boost immunizations have shown great promise in combating mucosal infections such as tuberculosis and AIDS. However, their immune mechanisms remain poorly defined. In particular, it is still unclear whether T-cell and innate immunity may be independently affected by these immunization modalities and how it impacts immune protective outcome. Using two virus-based tuberculosis vaccines (adenovirus (Ad) and vesicular stomatitis virus (VSV) vectors), we found that while both homologous (Ad/Ad) and heterologous (Ad/VSV) respiratory mucosal boost immunizations elicited similar T-cell responses in the lung, they led to drastically different immune protective outcomes. Compared with Ad-based boosting, VSV-based boosting resulted in poorly enhanced protection against tuberculosis. Such inferior protection was associated with differentially imprinted innate phagocytes, particularly the CD11c(+) CD11b(+/-) cells, in the lung. We identified heightened type 1 interferon (IFN) responses to be the triggering mechanism. Thus, increased IFN-beta severely blunted interleukin-12 responses in infected phagocytes, which in turn impaired their nitric oxide production and antimycobacterial activities. Our study reveals that vaccine vectors may differentially imprint innate cells at the mucosal site of immunization, which can impact immune-protective outcome, independent of T-cell immunity, and it is of importance to determine both T-cell and innate cell immunity in vaccine studies.
引用
收藏
页码:612 / 625
页数:14
相关论文
共 56 条
[1]   Intranasal Poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population [J].
Antonelli, Lis R. V. ;
Rothfuchs, Antonio Gigliotti ;
Goncalves, Ricardo ;
Roffe, Ester ;
Cheever, Allen W. ;
Bafica, Andre ;
Salazar, Andres M. ;
Feng, Carl G. ;
Sher, Alan .
JOURNAL OF CLINICAL INVESTIGATION, 2010, 120 (05) :1674-1682
[2]   Tuberculosis vaccine research: the impact of immunology [J].
Barker, Lewellys F. ;
Brennan, Michael J. ;
Rosenstein, Peri K. ;
Sadoff, Jerald C. .
CURRENT OPINION IN IMMUNOLOGY, 2009, 21 (03) :331-338
[3]   Immunogenicity of recombinant adenovirus serotype 35 vaccine in the presence of pre-existing anti-Ad5 immunity [J].
Barouch, DH ;
Pau, MG ;
Custers, JHHV ;
Koudstaal, W ;
Kostense, S ;
Havenga, MJE ;
Truitt, DM ;
Sumida, SM ;
Kishko, MG ;
Arthur, JC ;
Korioth-Schmitz, B ;
Newberg, MH ;
Gorgone, DA ;
Lifton, MA ;
Panicali, DL ;
Nabel, GJ ;
Letvin, NL ;
Goudsmit, J .
JOURNAL OF IMMUNOLOGY, 2004, 172 (10) :6290-6297
[4]   What Role Does the Route of Immunization Play in the Generation of Protective Immunity against Mucosal Pathogens? [J].
Belyakov, Igor M. ;
Ahlers, Jeffrey D. .
JOURNAL OF IMMUNOLOGY, 2009, 183 (11) :6883-6892
[5]   Mucosal vaccination overcomes the barrier to recombinant vaccinia immunization caused by preexisting poxvirus immunity [J].
Belyakov, IM ;
Moss, B ;
Strober, W ;
Berzofsky, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (08) :4512-4517
[6]   A comparison of IFNγ detection methods used in tuberculosis vaccine trials [J].
Beveridge, Natalie E. R. ;
Fletcher, Helen A. ;
Hughes, Jane ;
Pathan, Ansar A. ;
Scriba, Thomas J. ;
Minassian, Angela ;
Sander, Clare R. ;
Whelan, Kathryn T. ;
Dockrell, Hazel M. ;
Hill, Adrian V. S. ;
Hanekom, Willem A. ;
McShane, Helen .
TUBERCULOSIS, 2008, 88 (06) :631-640
[7]  
Byrnes AA, 2001, EUR J IMMUNOL, V31, P2026, DOI 10.1002/1521-4141(200107)31:7<2026::AID-IMMU2026>3.3.CO
[8]  
2-L
[9]   Comparative immunogenicity in rhesus monkeys of DNA plasmid, recombinant vaccinia virus, and replication-defective adenovirus vectors expressing a human immunodeficiency virus type 1 gag gene [J].
Casimiro, DR ;
Chen, L ;
Fu, TM ;
Evans, RK ;
Caulfield, MJ ;
Davies, ME ;
Tang, A ;
Chen, MC ;
Huang, LY ;
Harris, V ;
Freed, DC ;
Wilson, KA ;
Dubey, S ;
Zhu, DM ;
Nawrocki, D ;
Mach, H ;
Troutman, R ;
Isopi, L ;
Williams, D ;
Hurni, W ;
Xu, Z ;
Smith, JG ;
Wang, S ;
Liu, X ;
Guan, LM ;
Long, R ;
Trigona, W ;
Heidecker, GJ ;
Perry, HC ;
Persaud, N ;
Toner, TJ ;
Su, Q ;
Liang, XP ;
Youil, R ;
Chastain, M ;
Bell, AJ ;
Volkin, DB ;
Emini, EA ;
Shiver, JW .
JOURNAL OF VIROLOGY, 2003, 77 (11) :6305-6313
[10]   Role of innate cytokines in mycobacterial infection [J].
Cooper, A. M. ;
Mayer-Barber, K. D. ;
Sher, A. .
MUCOSAL IMMUNOLOGY, 2011, 4 (03) :252-260