Synthesis of graphene-based nanomaterials and their application in energy-related and environmental-related areas

被引:218
作者
Zhao, Guixia [1 ]
Wen, Tao [1 ]
Chen, Changlun [1 ]
Wang, Xiangke [1 ]
机构
[1] Chinese Acad Sci, Inst Plasma Phys, Key Lab Novel Thin Film Solar Cells, Hefei 230031, Peoples R China
关键词
CHEMICAL-VAPOR-DEPOSITION; SOLUTION-PROCESSABLE GRAPHENE; PERFORMANCE ANODE MATERIALS; ONE-STEP SYNTHESIS; ONE-POT SYNTHESIS; LOW-TEMPERATURE; FUNCTIONALIZED GRAPHENE; CARBON NANOTUBES; LITHIUM STORAGE; GRAPHITE OXIDE;
D O I
10.1039/c2ra20990j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As a fascinating two-dimensional carbon allotrope, graphene has triggered a 'gold rush' all over scientific research areas especially since the Nobel Prize for Physics in 2010. To exploit the prominent properties of graphene-based nanomaterials, two important problems are focused in this review: one is the synthesis of these graphene-based nanomaterials with different kinds of well-defined structures, and the other is the effective application of them as active nanomaterials in functional devices or processes. In this critical review, from the viewpoint of chemistry and materials, we give a brief overview of the recent significant advances in the synthesis of graphene-based nanomaterials and their applications in energy-related areas and environmental pollution remediation areas, including supercapacitors, lithium ion batteries, solar cells, adsorption, and degradation of organic/inorganic pollutants from large volumes of aqueous solutions in environmental pollution cleanup. The main challenges and perspectives of the materials for future research are also discussed.
引用
收藏
页码:9286 / 9303
页数:18
相关论文
共 204 条
[1]   Photothermal Deoxygenation of Graphite Oxide with Laser Excitation in Solution and Graphene-Aided Increase in Water Temperature [J].
Abdelsayed, Victor ;
Moussa, Sherif ;
Hassan, Hassan M. ;
Aluri, Hema S. ;
Collinson, Maryanne M. ;
El-Shall, M. Samy .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (19) :2804-2809
[2]   Non-Annealed Graphene Paper as a Binder-Free Anode for Lithium-Ion Batteries [J].
Abouimrane, Ali ;
Compton, Owen C. ;
Amine, Khalil ;
Nguyen, SonBinh T. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (29) :12800-12804
[3]   Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria [J].
Akhavan, Omid ;
Ghaderi, Elham .
ACS NANO, 2010, 4 (10) :5731-5736
[4]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[5]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[6]   Evaluation of solution-processed reduced graphene oxide films as transparent conductors [J].
Becerril, Hdctor A. ;
Mao, Jie ;
Liu, Zunfeng ;
Stoltenberg, Randall M. ;
Bao, Zhenan ;
Chen, Yongsheng .
ACS NANO, 2008, 2 (03) :463-470
[7]   Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst [J].
Bhaviripudi, Sreekar ;
Jia, Xiaoting ;
Dresselhaus, Mildred S. ;
Kong, Jing .
NANO LETTERS, 2010, 10 (10) :4128-4133
[8]   Electrochemical performance of a graphene-polypyrrole nanocomposite as a supercapacitor electrode (vol 22, 295202, 2011) [J].
Bose, Saswata ;
Kim, Nam Hoon ;
Kuila, Tapas ;
Lau, Kin-tak ;
Lee, Joong Hee .
NANOTECHNOLOGY, 2011, 22 (36)
[9]   Highly conductive carbon-nanotube/graphite-oxide hybrid films [J].
Cai, Dongyu ;
Song, Mo ;
Xu, Chenxi .
ADVANCED MATERIALS, 2008, 20 (09) :1706-+
[10]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473