Homogenization of wall-slip gas flow through porous media

被引:48
作者
Skjetne, E
Auriault, JL
机构
[1] Stanford Univ, Dept Petr Engn, Stanford, CA 94305 USA
[2] UJF, INPG, CNRS, Lab Sol Solides Struct 3S, F-38041 Grenoble, France
关键词
Klinkenberg; wall-slip; Knudsen; gas flow; low pressure; Navier-Stokes; homogenization;
D O I
10.1023/A:1006572324102
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The permeability of reservoir rocks is most commonly measured with an atmospheric gas. Permeability is greater for a gas than for a liquid. The Klinkenberg equation gives a semi-empirical relation between the liquid and gas permeabilities. In this paper, the wall-slip gas flow problem is homogenized. This problem is described by the steady state, low velocity Navier-Stokes equations for a compressible gas with a small Knudsen number. Darcy's law with a permeability tensor equal to that of liquid flow is shown to be valid to the lowest order. The lowest order wall-slip correction is a local tensorial form of the Klinkenberg equation. The Klinkenberg permeability is a positive tensor. It is in general not symmetric, but may under some conditions, which we specify, be symmetric. Our result reduces to the Klinkenberg equation for constant viscosity gas flow in isotropic media.
引用
收藏
页码:293 / 306
页数:14
相关论文
共 24 条
  • [1] Adzumi H., 1937, Bull. Chem. Soc. Jpn., V12, P285, DOI [10.1246/bcsj.12.285, DOI 10.1246/BCSJ.12.285]
  • [2] Adzumi H., 1937, BCSJ, V12, P199, DOI DOI 10.1246/BCSJ.12.199
  • [3] [Anonymous], 1995, THESIS NORWEGIAN U S
  • [4] [Anonymous], 1989, FLOW TRANSPORT POROU, DOI DOI 10.1007/978-3-642-75015-1
  • [5] HETEROGENEOUS MEDIUM - IS AN EQUIVALENT MACROSCOPIC DESCRIPTION POSSIBLE
    AURIAULT, JL
    [J]. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1991, 29 (07) : 785 - 795
  • [6] AURIAULT JL, 1990, EUR J MECH A-SOLID, V9, P373
  • [7] Barenblatt G. I., 1989, Theory of Fluid Flows Through Natural Rocks
  • [8] Bensoussan A., 1978, ASYMPTOTIC ANAL PERI
  • [9] Cercignani C., 1990, Mathematical Methods in Kinetic Theory, DOI DOI 10.1007/978-1-4899-7291-0
  • [10] Cercignani C, 1988, BOLTZMANN EQUATION I